{"title":"MorphPool: Efficient Non-linear Pooling & Unpooling in CNNs","authors":"R. Groenendijk, L. Dorst, T. Gevers","doi":"10.48550/arXiv.2211.14037","DOIUrl":null,"url":null,"abstract":"Pooling is essentially an operation from the field of Mathematical Morphology, with max pooling as a limited special case. The more general setting of MorphPooling greatly extends the tool set for building neural networks. In addition to pooling operations, encoder-decoder networks used for pixel-level predictions also require unpooling. It is common to combine unpooling with convolution or deconvolution for up-sampling. However, using its morphological properties, unpooling can be generalised and improved. Extensive experimentation on two tasks and three large-scale datasets shows that morphological pooling and unpooling lead to improved predictive performance at much reduced parameter counts.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"21 1","pages":"56"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.14037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Pooling is essentially an operation from the field of Mathematical Morphology, with max pooling as a limited special case. The more general setting of MorphPooling greatly extends the tool set for building neural networks. In addition to pooling operations, encoder-decoder networks used for pixel-level predictions also require unpooling. It is common to combine unpooling with convolution or deconvolution for up-sampling. However, using its morphological properties, unpooling can be generalised and improved. Extensive experimentation on two tasks and three large-scale datasets shows that morphological pooling and unpooling lead to improved predictive performance at much reduced parameter counts.