Temperature Evolution Properties of Overhead Line Conductor Exposed to Large-scale Jet Fires Induced by High-pressure Natural Gas Leakage

Zhenhua Wang, Fei You, Juncheng Jiang, Yun Zhang, Kai Shui, Jixiang Xu, Zonglin Fu, Wenhao Huangfu
{"title":"Temperature Evolution Properties of Overhead Line Conductor Exposed to Large-scale Jet Fires Induced by High-pressure Natural Gas Leakage","authors":"Zhenhua Wang, Fei You, Juncheng Jiang, Yun Zhang, Kai Shui, Jixiang Xu, Zonglin Fu, Wenhao Huangfu","doi":"10.1109/ICFSFPE48751.2019.9055856","DOIUrl":null,"url":null,"abstract":"A unified model was developed from leaked high-pressure natural gas (up to 6.55 MPa) and a procedure outlined in IEEE Standard 738–2012 for transmission line conductor temperature. A real-scale case was presented to show the thermal effects of a large-scale jet fire on the nearby transmission line by setting their distances from 200 to 500 m. The predicted total flame height and damage radius correspond to the reported results with appropriate correction of input parameters. Transmission lines with higher load currents and shorter distances to the jet fire induce higher temperature rises in line conductors. Reducing the current load of transmission line needs to integrate both factors of thermal failure of transmission line and economy of power system.","PeriodicalId":6687,"journal":{"name":"2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE)","volume":"433 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFSFPE48751.2019.9055856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A unified model was developed from leaked high-pressure natural gas (up to 6.55 MPa) and a procedure outlined in IEEE Standard 738–2012 for transmission line conductor temperature. A real-scale case was presented to show the thermal effects of a large-scale jet fire on the nearby transmission line by setting their distances from 200 to 500 m. The predicted total flame height and damage radius correspond to the reported results with appropriate correction of input parameters. Transmission lines with higher load currents and shorter distances to the jet fire induce higher temperature rises in line conductors. Reducing the current load of transmission line needs to integrate both factors of thermal failure of transmission line and economy of power system.
高压天然气泄漏引发大规模射流火灾时架空线路导体温度演化特性研究
根据泄漏的高压天然气(高达6.55 MPa)和IEEE标准738-2012中概述的输电线路导体温度的程序,开发了一个统一的模型。以大型射流火灾对附近输电线路的热效应为例,将其距离设定为200 ~ 500 m。预测的火焰总高度和损伤半径与报告的结果相吻合,并对输入参数进行了适当的修正。负载电流越大,距离喷火源越近,线路导体的温升越高。降低输电线路的电流负荷需要综合考虑输电线路热失效和电力系统经济性两个因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信