AUTOMATIC 2D AND 3D SEGMENTATION OF GLIOBLASTOMA BRAIN TUMOR

IF 0.6 Q4 ENGINEERING, BIOMEDICAL
J. G. Precious, S. P. A. Kirubha, R. Premkumar, I. K. Evangeline
{"title":"AUTOMATIC 2D AND 3D SEGMENTATION OF GLIOBLASTOMA BRAIN TUMOR","authors":"J. G. Precious, S. P. A. Kirubha, R. Premkumar, I. K. Evangeline","doi":"10.4015/s1016237222500557","DOIUrl":null,"url":null,"abstract":"The brain tumor is the most common destructive and deadly disease. In general, various imaging modalities such as CT, MRI and PET are used to evaluate the brain tumor. Magnetic resonance imaging (MRI) is a prominent diagnostic method for evaluating these tumors. Gliomas, due to their malignant nature and rapid development, are the most common and aggressive form of brain tumors. In the clinical routine, the method of identifying tumor borders from healthy cells is still a difficult task. Manual segmentation takes time, so we use a deep convolutional neural network to improve efficiency. We present a combined DNN architecture using U-net and MobilenetV2. It exploits both local characteristics and more global contextual characteristics from the 2D MRI FLAIR images. The proposed network has encoder and decoder architecture. The performance metrices such as dice loss, dice coefficient, accuracy and IOU have been calculated. Automated segmentation of 3D MRI is essential for the identification, assessment, and treatment of brain tumors although there is significant interest in machine-learning algorithms for computerized segmentation of brain tumors. The goal of this work is to perform 3D volumetric segmentation using BraTumIA. It is a widely available software application used to separate tumor characteristics on 3D brain MR volumes. BraTumIA has lately been used in a number of clinical trials. In this work, we have segmented 2D slices and 3D volumes of MRI brain tumor images.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The brain tumor is the most common destructive and deadly disease. In general, various imaging modalities such as CT, MRI and PET are used to evaluate the brain tumor. Magnetic resonance imaging (MRI) is a prominent diagnostic method for evaluating these tumors. Gliomas, due to their malignant nature and rapid development, are the most common and aggressive form of brain tumors. In the clinical routine, the method of identifying tumor borders from healthy cells is still a difficult task. Manual segmentation takes time, so we use a deep convolutional neural network to improve efficiency. We present a combined DNN architecture using U-net and MobilenetV2. It exploits both local characteristics and more global contextual characteristics from the 2D MRI FLAIR images. The proposed network has encoder and decoder architecture. The performance metrices such as dice loss, dice coefficient, accuracy and IOU have been calculated. Automated segmentation of 3D MRI is essential for the identification, assessment, and treatment of brain tumors although there is significant interest in machine-learning algorithms for computerized segmentation of brain tumors. The goal of this work is to perform 3D volumetric segmentation using BraTumIA. It is a widely available software application used to separate tumor characteristics on 3D brain MR volumes. BraTumIA has lately been used in a number of clinical trials. In this work, we have segmented 2D slices and 3D volumes of MRI brain tumor images.
脑胶质母细胞瘤的自动二维和三维分割
脑肿瘤是最常见的破坏性和致命性疾病。通常,各种成像方式如CT、MRI和PET用于评估脑肿瘤。磁共振成像(MRI)是评估这些肿瘤的主要诊断方法。胶质瘤由于其恶性性质和快速发展,是最常见和最具侵袭性的脑肿瘤。在临床常规中,从健康细胞中识别肿瘤边界的方法仍然是一项困难的任务。人工分割需要时间,因此我们使用深度卷积神经网络来提高效率。我们提出了一个使用U-net和MobilenetV2的组合DNN架构。它利用了二维MRI FLAIR图像的局部特征和更多的全局背景特征。该网络具有编码器和解码器结构。计算了骰子损耗、骰子系数、精度、欠条等性能指标。3D MRI的自动分割对于脑肿瘤的识别、评估和治疗至关重要,尽管机器学习算法对脑肿瘤的计算机分割有很大的兴趣。这项工作的目标是使用BraTumIA进行3D体分割。它是一种广泛使用的软件应用程序,用于分离3D脑MR体积上的肿瘤特征。最近,BraTumIA被用于许多临床试验。在这项工作中,我们对MRI脑肿瘤图像的二维切片和三维体积进行了分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信