{"title":"Strong Resonance Bifurcations in a Discrete-time In-host Model with a Saturating Infection Rate","authors":"Sanaa Moussa Salman","doi":"10.1115/1.4062390","DOIUrl":null,"url":null,"abstract":"\n The complex dynamics of a two-dimensional discrete-time in-host infection model with a saturating infection rate are discussed. The local stability of fixed points of the model is investigated. The model undergoes both flip and Neimark-Sacker bifurcations. Moreover, codimension-two bifurcations of the infected fixed point are discussed using bifurcation theory and normal forms. The model exhibits 1:2, 1:3, and 1:4 strong resonances. Numerical simulations are performed to verify our analysis. In addition, bifurcations of higher iterations are extracted from the numerical continuation. In order to reduce the disease burden, a control strategy is applied to the discrete-time model.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062390","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The complex dynamics of a two-dimensional discrete-time in-host infection model with a saturating infection rate are discussed. The local stability of fixed points of the model is investigated. The model undergoes both flip and Neimark-Sacker bifurcations. Moreover, codimension-two bifurcations of the infected fixed point are discussed using bifurcation theory and normal forms. The model exhibits 1:2, 1:3, and 1:4 strong resonances. Numerical simulations are performed to verify our analysis. In addition, bifurcations of higher iterations are extracted from the numerical continuation. In order to reduce the disease burden, a control strategy is applied to the discrete-time model.
期刊介绍:
The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.