{"title":"Large scale log anomaly detection via spatial pooling","authors":"Rin Hirakawa , Hironori Uchida , Asato Nakano , Keitaro Tominaga , Yoshihisa Nakatoh","doi":"10.1016/j.cogr.2021.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Log data is an important clue to understanding the behaviour of a system at runtime, but the complexity of software systems in recent years has made the data that engineers need to analyse enormous and difficult to understand. While log-based anomaly detection methods based on deep learning have enabled highly accurate detection, the computational performance required to operate the models has become very high. In this study, we propose an anomaly detection method, SPClassifier, based on sparse features and the internal state of the model, and investigate the feasibility of anomaly detection that can be utilized in environments without computing resources such as GPUs. Benchmark with the latest deep learning models on the BGL dataset shows that the proposed method can achieve competitive accuracy with these methods and has a high level of anomaly detection performance even when the amount of training data is small.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"1 ","pages":"Pages 188-196"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241321000173/pdfft?md5=7d47126ac817ab84febc1c4f3273aa7d&pid=1-s2.0-S2667241321000173-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241321000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Log data is an important clue to understanding the behaviour of a system at runtime, but the complexity of software systems in recent years has made the data that engineers need to analyse enormous and difficult to understand. While log-based anomaly detection methods based on deep learning have enabled highly accurate detection, the computational performance required to operate the models has become very high. In this study, we propose an anomaly detection method, SPClassifier, based on sparse features and the internal state of the model, and investigate the feasibility of anomaly detection that can be utilized in environments without computing resources such as GPUs. Benchmark with the latest deep learning models on the BGL dataset shows that the proposed method can achieve competitive accuracy with these methods and has a high level of anomaly detection performance even when the amount of training data is small.