Associated Keyword analysis for temporal data with spatial visualization

Shunsuke Wada, Y. Yaguchi, R. Ogata, Y. Watanobe, K. Naruse, R. Oka
{"title":"Associated Keyword analysis for temporal data with spatial visualization","authors":"Shunsuke Wada, Y. Yaguchi, R. Ogata, Y. Watanobe, K. Naruse, R. Oka","doi":"10.1109/ICAWST.2013.6765441","DOIUrl":null,"url":null,"abstract":"To extract temporal variations in the relation between two or more words in a large time-series script, we propose three procedures for adoption by the existing Associated Keyword Space system, as follows. First, we begin the calculations from a previous state. Second, we add a random seed if a new object was present in the previous state. Thrid, we forget those object relations from the previous state that have no affinity with the selected term. We have experimented with this improved algorithm using a large time-series of tweets from Twitter. With this approach, it is possible to check on the volatility of topics.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"7 1","pages":"243-249"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To extract temporal variations in the relation between two or more words in a large time-series script, we propose three procedures for adoption by the existing Associated Keyword Space system, as follows. First, we begin the calculations from a previous state. Second, we add a random seed if a new object was present in the previous state. Thrid, we forget those object relations from the previous state that have no affinity with the selected term. We have experimented with this improved algorithm using a large time-series of tweets from Twitter. With this approach, it is possible to check on the volatility of topics.
关联关键字分析的时间数据与空间可视化
为了提取大型时间序列脚本中两个或多个单词之间关系的时间变化,我们提出了三个步骤供现有的关联关键字空间系统采用,如下:首先,我们从之前的状态开始计算。其次,如果新对象在之前的状态中存在,我们添加一个随机种子。第三,我们忽略了前一状态中与所选术语没有关联的对象关系。我们使用来自Twitter的大量tweet时间序列对这种改进的算法进行了实验。使用这种方法,可以检查主题的波动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信