Zhenhe Chen, Bin Xue, Wentao Zhao, Linxia Zhang, Liquan Sun, Aiqin Luo
{"title":"High porosity lysozyme imprinted polymers","authors":"Zhenhe Chen, Bin Xue, Wentao Zhao, Linxia Zhang, Liquan Sun, Aiqin Luo","doi":"10.1109/RSETE.2011.5964091","DOIUrl":null,"url":null,"abstract":"High porosity lysozyme imprinted polyacrylamide polymers were synthesized by introducing nano-silica particles as pore-forming agent which could produce a lot of nano-pores after removing by HF etching. The adsorption capacity of the polymers with pore-forming agent (17.1mg/g) is much larger than those without adding silica (7.54 mg/g). The polymer in the form of “bulk” has pretty good mechanic strength which can overcome swelling and softness of reported crushed imprinted polymers and could be used in large-scale enrichment and separation of lysozyme from raw biological materials.","PeriodicalId":6296,"journal":{"name":"2011 International Conference on Remote Sensing, Environment and Transportation Engineering","volume":"14 1","pages":"8306-8309"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Remote Sensing, Environment and Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSETE.2011.5964091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
High porosity lysozyme imprinted polyacrylamide polymers were synthesized by introducing nano-silica particles as pore-forming agent which could produce a lot of nano-pores after removing by HF etching. The adsorption capacity of the polymers with pore-forming agent (17.1mg/g) is much larger than those without adding silica (7.54 mg/g). The polymer in the form of “bulk” has pretty good mechanic strength which can overcome swelling and softness of reported crushed imprinted polymers and could be used in large-scale enrichment and separation of lysozyme from raw biological materials.