Vector current renormalisation in momentum subtraction schemes using the HISQ action

D. Hatton, C. Davies, G. Lepage, A. Lytle
{"title":"Vector current renormalisation in momentum subtraction schemes using the HISQ action","authors":"D. Hatton, C. Davies, G. Lepage, A. Lytle","doi":"10.22323/1.363.0016","DOIUrl":null,"url":null,"abstract":"As the only lattice vector current that does not require renormalisation is the point-split conserved current it is convenient to have a robust, precise and computationally cheap methodology for the calculation of vector current renormalisation factors, $Z_V$. Momentum subtraction schemes, such as RI-SMOM, implemented nonperturbatively on the lattice provide such a method if it can be shown that the systematic errors, e.g. from condensates, are well controlled. \nWe present $Z_V$ calculations for the conserved current in both the RI-SMOM and RI$'$-MOM momentum subtraction schemes as well as local current renormalisation in the RI-SMOM scheme. By performing these calculations at various values of the momentum scale $\\mu$ and different lattice spacings we can investigate the presence of power suppressed nonperturbative contributions and compare the results to expectations arising from the Ward-Takahashi identity. Our results show that the RI-SMOM scheme provides a well controlled determination of $Z_V$ but the standard RI$'$-MOM scheme does not. \nWe then present some preliminary uses of these $Z_V$ calculations in charm physics.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the only lattice vector current that does not require renormalisation is the point-split conserved current it is convenient to have a robust, precise and computationally cheap methodology for the calculation of vector current renormalisation factors, $Z_V$. Momentum subtraction schemes, such as RI-SMOM, implemented nonperturbatively on the lattice provide such a method if it can be shown that the systematic errors, e.g. from condensates, are well controlled. We present $Z_V$ calculations for the conserved current in both the RI-SMOM and RI$'$-MOM momentum subtraction schemes as well as local current renormalisation in the RI-SMOM scheme. By performing these calculations at various values of the momentum scale $\mu$ and different lattice spacings we can investigate the presence of power suppressed nonperturbative contributions and compare the results to expectations arising from the Ward-Takahashi identity. Our results show that the RI-SMOM scheme provides a well controlled determination of $Z_V$ but the standard RI$'$-MOM scheme does not. We then present some preliminary uses of these $Z_V$ calculations in charm physics.
动量减法方案中使用HISQ动作的矢量电流重整化
由于唯一不需要重整化的晶格矢量电流是点分裂守恒电流,因此可以方便地使用一种鲁棒、精确且计算成本低廉的方法来计算矢量电流重整化因子Z_V。如果可以证明系统误差(如凝聚物)得到很好的控制,那么在晶格上非摄动实现的动量减法方案,如RI-SMOM,就提供了这样一种方法。我们给出了RI- smom和RI$'$-MOM动量减法方案中守恒电流的$Z_V$计算,以及RI- smom方案中的局部电流重整。通过在不同的动量尺度$\mu$和不同的晶格间距下进行这些计算,我们可以研究幂抑制的非微扰贡献的存在,并将结果与Ward-Takahashi恒等式产生的期望进行比较。结果表明,RI- smom方案可以很好地控制Z_V的测定,而标准RI -MOM方案则不能。然后,我们提出了这些$Z_V$计算在魅力物理中的一些初步用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信