SIASM: Sparsity-based image alignment and stitching method for robust image mosaicking

Yuelong Li, V. Monga
{"title":"SIASM: Sparsity-based image alignment and stitching method for robust image mosaicking","authors":"Yuelong Li, V. Monga","doi":"10.1109/ICIP.2016.7532674","DOIUrl":null,"url":null,"abstract":"Image alignment and stitching continue to be the topics of great interest. Image mosaicking is a key application that involves both alignment and stitching of multiple images. Despite significant previous effort, existing methods have limited robustness in dealing with occlusions and local object motion in different captures. To address this issue, we investigate the potential of applying sparsity-based methods to the task of image alignment and stitching. We formulate the alignment problem as a low-rank and sparse matrix decomposition problem under incomplete observations (multiple parts of a scene), and the stitching problem as a multiple labeling problem which utilizes the sparse components. Additionally we develop efficient algorithms for solving them. Unlike typical pairwise alignment manners in classical image alignment algorithms, our algorithm is capable of simultaneously aligning multiple images, making full use of inter-frame relationships among all images. Experimental results demonstrate that the proposed algorithm is capable of generating artifact-free stitched image mosaics that are robust against occlusions and object motion.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"99 1","pages":"1828-1832"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Image alignment and stitching continue to be the topics of great interest. Image mosaicking is a key application that involves both alignment and stitching of multiple images. Despite significant previous effort, existing methods have limited robustness in dealing with occlusions and local object motion in different captures. To address this issue, we investigate the potential of applying sparsity-based methods to the task of image alignment and stitching. We formulate the alignment problem as a low-rank and sparse matrix decomposition problem under incomplete observations (multiple parts of a scene), and the stitching problem as a multiple labeling problem which utilizes the sparse components. Additionally we develop efficient algorithms for solving them. Unlike typical pairwise alignment manners in classical image alignment algorithms, our algorithm is capable of simultaneously aligning multiple images, making full use of inter-frame relationships among all images. Experimental results demonstrate that the proposed algorithm is capable of generating artifact-free stitched image mosaics that are robust against occlusions and object motion.
基于稀疏性的图像对齐和拼接方法,用于鲁棒图像拼接
图像对齐和拼接仍然是人们非常感兴趣的话题。图像拼接是一项关键的应用,涉及多个图像的对齐和拼接。尽管之前做了大量的工作,但现有方法在处理不同捕获的遮挡和局部目标运动方面的鲁棒性有限。为了解决这个问题,我们研究了将基于稀疏性的方法应用于图像对齐和拼接任务的潜力。我们将对齐问题表述为不完全观测(场景的多个部分)下的低秩稀疏矩阵分解问题,将拼接问题表述为利用稀疏分量的多重标记问题。此外,我们开发了有效的算法来解决它们。与经典图像对齐算法中典型的两两对齐方式不同,我们的算法能够同时对齐多幅图像,充分利用了所有图像之间的帧间关系。实验结果表明,该算法能够生成无伪影的拼接图像,对遮挡和目标运动具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信