{"title":"Profiting from overreaction in soccer betting odds","authors":"E. Wheatcroft","doi":"10.1515/jqas-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract Betting odds are generally considered to represent accurate reflections of the underlying probabilities for the outcomes of sporting events. There are, however, known to be a number of inherent biases such as the favorite-longshot bias in which outsiders are generally priced with poorer value odds than favorites. Using data from European soccer matches, this paper demonstrates the existence of another bias in which the match odds overreact to favorable and unfavorable runs of results. A statistic is defined, called the Combined Odds Distribution (COD) statistic, which measures the performance of a team relative to expectations given their odds over previous matches. Teams that overperform expectations tend to have a high COD statistic and those that underperform tend to have a low COD statistic. Using data from twenty different leagues over twelve seasons, it is shown that teams with a low COD statistic tend to be assigned more generous odds by bookmakers. This can be exploited and a sustained and robust profit can be made. It is suggested that the bias in the odds can be explained in the context of the “hot hand fallacy”, in which gamblers overestimate variation in the ability of each team over time.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"139 1","pages":"193 - 209"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Betting odds are generally considered to represent accurate reflections of the underlying probabilities for the outcomes of sporting events. There are, however, known to be a number of inherent biases such as the favorite-longshot bias in which outsiders are generally priced with poorer value odds than favorites. Using data from European soccer matches, this paper demonstrates the existence of another bias in which the match odds overreact to favorable and unfavorable runs of results. A statistic is defined, called the Combined Odds Distribution (COD) statistic, which measures the performance of a team relative to expectations given their odds over previous matches. Teams that overperform expectations tend to have a high COD statistic and those that underperform tend to have a low COD statistic. Using data from twenty different leagues over twelve seasons, it is shown that teams with a low COD statistic tend to be assigned more generous odds by bookmakers. This can be exploited and a sustained and robust profit can be made. It is suggested that the bias in the odds can be explained in the context of the “hot hand fallacy”, in which gamblers overestimate variation in the ability of each team over time.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.