{"title":"Hybrid intelligent modeling approach for online predicting and simulating surface temperature of HVs","authors":"Ming Tie, Hong Fang, Jianlin Wang, Weihua Chen","doi":"10.1142/s1793962322410070","DOIUrl":null,"url":null,"abstract":"Online prediction as well as online simulation of surface temperature will play a significant role in flight safety of future near space hypersonic vehicles (HVs). But it still remains a classical scientific problem both in thermodynamics and aerospace science. In view of the complex HV structure and complex heat conduction procedure, three-dimensional numerical simulation is too inefficient for online prediction, while current rapid computation methods cannot meet the requirement of accuracy. Therefore, a hybrid intelligent dynamic modeling approach is proposed to estimate the surface temperature of HV with the combination of mechanism equations, test data and intelligent modeling technology. A simplified model based on a mechanism equation and experimental formulas is presented for predicting or simulating transient heat conduction procedure efficiently, while a case-based reasoning (CBR) algorithm is developed to estimate two uncertain coefficients in the simplified model. Furthermore, a support vector regression (SVR)-based model is developed to compensate the modeling error. With the data both from high-precision finite element computation and from real-world HV thermal protection experiments, a number of comparative simulations demonstrate the effectiveness of the proposed hybrid intelligent modeling approach.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"70 1","pages":"2241007:1-2241007:14"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322410070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Online prediction as well as online simulation of surface temperature will play a significant role in flight safety of future near space hypersonic vehicles (HVs). But it still remains a classical scientific problem both in thermodynamics and aerospace science. In view of the complex HV structure and complex heat conduction procedure, three-dimensional numerical simulation is too inefficient for online prediction, while current rapid computation methods cannot meet the requirement of accuracy. Therefore, a hybrid intelligent dynamic modeling approach is proposed to estimate the surface temperature of HV with the combination of mechanism equations, test data and intelligent modeling technology. A simplified model based on a mechanism equation and experimental formulas is presented for predicting or simulating transient heat conduction procedure efficiently, while a case-based reasoning (CBR) algorithm is developed to estimate two uncertain coefficients in the simplified model. Furthermore, a support vector regression (SVR)-based model is developed to compensate the modeling error. With the data both from high-precision finite element computation and from real-world HV thermal protection experiments, a number of comparative simulations demonstrate the effectiveness of the proposed hybrid intelligent modeling approach.