Hybrid Quantum Deep Learning with Differential Privacy for Botnet DGA Detection

Hatma Suryotrisongko, Y. Musashi
{"title":"Hybrid Quantum Deep Learning with Differential Privacy for Botnet DGA Detection","authors":"Hatma Suryotrisongko, Y. Musashi","doi":"10.1109/ICTS52701.2021.9608217","DOIUrl":null,"url":null,"abstract":"In the DNS query-based botnet domain generation algorithm (DGA) detection, one might argue that domain names in DNS query data might disclose sensitive information related to browsing histories. User privacy preservation is important in the current personal data protection (PDP) era. This paper proposed implementing the differential privacy approach to the hybrid quantum deep learning model for botnet DGA detection. The proposed model consists of traditional deep learning layers and a quantum layer by combining angle embedding and random layer circuits from the Pennylane framework. We used ten botnet DGA datasets: Conficker, Cryptolocker, Goz, Matsnu, New_Goz, Pushdo, Ramdo, and Rovnix. We conducted experiments with considering noise models of eight IBM quantum devices: (ibmq_5_yorktown, ibmq_armonk, ibmq_athens, ibmq_belem, ibmq_lima, ibmq_quito, ibmq_santiago, and ibmqx2). We found that our proposed hybrid quantum model delivers a satisfactory performance (92.4% of maximum accuracy), superior to the classical deep learning counterpart. However, the hyperparameters of the differential privacy implementations (l2_norm_clip, noise_multiplier, microbatches, and learning_rate) still need to be tuned to improve the privacy guarantee of our proposed models.","PeriodicalId":6738,"journal":{"name":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","volume":"5 1","pages":"68-72"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS52701.2021.9608217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the DNS query-based botnet domain generation algorithm (DGA) detection, one might argue that domain names in DNS query data might disclose sensitive information related to browsing histories. User privacy preservation is important in the current personal data protection (PDP) era. This paper proposed implementing the differential privacy approach to the hybrid quantum deep learning model for botnet DGA detection. The proposed model consists of traditional deep learning layers and a quantum layer by combining angle embedding and random layer circuits from the Pennylane framework. We used ten botnet DGA datasets: Conficker, Cryptolocker, Goz, Matsnu, New_Goz, Pushdo, Ramdo, and Rovnix. We conducted experiments with considering noise models of eight IBM quantum devices: (ibmq_5_yorktown, ibmq_armonk, ibmq_athens, ibmq_belem, ibmq_lima, ibmq_quito, ibmq_santiago, and ibmqx2). We found that our proposed hybrid quantum model delivers a satisfactory performance (92.4% of maximum accuracy), superior to the classical deep learning counterpart. However, the hyperparameters of the differential privacy implementations (l2_norm_clip, noise_multiplier, microbatches, and learning_rate) still need to be tuned to improve the privacy guarantee of our proposed models.
基于差分隐私的混合量子深度学习用于僵尸网络DGA检测
在基于DNS查询的僵尸网络域生成算法(DGA)检测中,有人可能会认为DNS查询数据中的域名可能会泄露与浏览历史相关的敏感信息。在当前的个人数据保护(PDP)时代,用户隐私保护非常重要。针对僵尸网络DGA检测的混合量子深度学习模型,提出了一种差分隐私算法。该模型结合了Pennylane框架的角度嵌入和随机层电路,由传统深度学习层和量子层组成。我们使用了10个僵尸网络DGA数据集:Conficker、Cryptolocker、Goz、Matsnu、New_Goz、Pushdo、Ramdo和Rovnix。我们考虑了8个IBM量子器件(ibmq_5_yorktown、ibmq_armonk、ibmq_athens、ibmq_belem、ibmq_lima、ibmq_quito、ibmq_santiago和ibmqx2)的噪声模型进行了实验。我们发现我们提出的混合量子模型提供了令人满意的性能(最大精度的92.4%),优于经典的深度学习对应模型。然而,差分隐私实现的超参数(l2_norm_clip、noise_multiplier、microbatch和learning_rate)仍然需要调整,以提高我们提出的模型的隐私保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信