On non-linear lower bounds in computational complexity

L. Valiant
{"title":"On non-linear lower bounds in computational complexity","authors":"L. Valiant","doi":"10.1145/800116.803752","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to explore the possibility that purely graph-theoretic reasons may account for the superlinear complexity of wide classes of computational problems. The results are therefore of two kinds: reductions to graph theoretic conjectures on the one hand, and graph theoretic results on the other. We show that the graph of any algorithm for any one of a number of arithmetic problems (e.g. polynomial multiplication, discrete Fourier transforms, matrix multiplication) must have properties closely related to concentration networks.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1975-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800116.803752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

The purpose of this paper is to explore the possibility that purely graph-theoretic reasons may account for the superlinear complexity of wide classes of computational problems. The results are therefore of two kinds: reductions to graph theoretic conjectures on the one hand, and graph theoretic results on the other. We show that the graph of any algorithm for any one of a number of arithmetic problems (e.g. polynomial multiplication, discrete Fourier transforms, matrix multiplication) must have properties closely related to concentration networks.
关于计算复杂度的非线性下界
本文的目的是探讨纯图论的原因可以解释大量计算问题的超线性复杂性的可能性。因此,结果有两种:一方面是对图论猜想的约简,另一方面是图论结果。我们证明了任意一种算法的图(例如多项式乘法、离散傅立叶变换、矩阵乘法)必须具有与集中网络密切相关的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信