Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids

Zhenhua Zhou, H. So, Frankie K. W. Chan
{"title":"Optimally weighted music algorithm for frequency estimation of real harmonic sinusoids","authors":"Zhenhua Zhou, H. So, Frankie K. W. Chan","doi":"10.1109/ICASSP.2012.6288680","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, the problem of fundamental frequency estimation for real harmonic sinusoids is addressed. By making use of the subspace technique and Markov-based eigenanalysis, an optimally weighted harmonic multiple signal classification (OW-HMUSIC) estimator is devised. The fundamental frequency estimates are computed in an iterative manner. The performance of the proposed method is derived. Computer simulations are performed to compare the proposed approach with nonlinear least squares and HMUSIC methods as well as Cramér-Rao lower bound.
实数谐波正弦波频率估计的最优加权音乐算法
本文研究了实数谐波正弦波的基频估计问题。利用子空间技术和基于马尔可夫的特征分析,设计了一种最优加权谐波多重信号分类估计器。基频估计以迭代的方式计算。推导了该方法的性能。通过计算机仿真,将该方法与非线性最小二乘、HMUSIC方法以及cramsamr - rao下界方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信