Rapid Analysis of Network Connectivity

Scott Freitas, Hanghang Tong, Nan Cao, Yinglong Xia
{"title":"Rapid Analysis of Network Connectivity","authors":"Scott Freitas, Hanghang Tong, Nan Cao, Yinglong Xia","doi":"10.1145/3132847.3133170","DOIUrl":null,"url":null,"abstract":"This research focuses on accelerating the computational time of two base network algorithms (k-simple shortest paths and minimum spanning tree for a subset of nodes)---cornerstones behind a variety of network connectivity mining tasks---with the goal of rapidly finding networkpathways andtrees using a set of user-specific query nodes. To facilitate this process we utilize: (1) multi-threaded algorithm variations, (2) network re-use for subsequent queries and (3) a novel algorithm, Key Neighboring Vertices (KNV), to reduce the network search space. The proposed KNV algorithm serves a dual purpose: (a) to reduce the computation time for algorithmic analysis and (b) to identify key vertices in the network (\\textit ). Empirical results indicate this combination of techniques significantly improves the baseline performance of both algorithms. We have also developed a web platform utilizing the proposed network algorithms to enable researchers and practitioners to both visualize and interact with their datasets (PathFinder: http://www.path-finder.io.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"261 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This research focuses on accelerating the computational time of two base network algorithms (k-simple shortest paths and minimum spanning tree for a subset of nodes)---cornerstones behind a variety of network connectivity mining tasks---with the goal of rapidly finding networkpathways andtrees using a set of user-specific query nodes. To facilitate this process we utilize: (1) multi-threaded algorithm variations, (2) network re-use for subsequent queries and (3) a novel algorithm, Key Neighboring Vertices (KNV), to reduce the network search space. The proposed KNV algorithm serves a dual purpose: (a) to reduce the computation time for algorithmic analysis and (b) to identify key vertices in the network (\textit ). Empirical results indicate this combination of techniques significantly improves the baseline performance of both algorithms. We have also developed a web platform utilizing the proposed network algorithms to enable researchers and practitioners to both visualize and interact with their datasets (PathFinder: http://www.path-finder.io.
网络连通性快速分析
本研究的重点是加速两种基本网络算法(k-简单最短路径和节点子集的最小生成树)的计算时间——各种网络连接挖掘任务背后的基石——目标是使用一组用户特定的查询节点快速找到网络路径和树。为了促进这一过程,我们利用:(1)多线程算法的变化,(2)后续查询的网络重用,以及(3)一种新的算法,关键相邻顶点(KNV),以减少网络搜索空间。提出的KNV算法具有双重目的:(a)减少算法分析的计算时间,(b)识别网络中的关键顶点(\ texttit)。实证结果表明,这种技术组合显著提高了两种算法的基线性能。我们还开发了一个网络平台,利用提出的网络算法,使研究人员和从业人员能够可视化并与他们的数据集交互(PathFinder: http://www.path-finder.io)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信