Bayesian Estimation of Macro-Finance DSGE Models with Stochastic Volatility

D. Rapach, Fei Tan
{"title":"Bayesian Estimation of Macro-Finance DSGE Models with Stochastic Volatility","authors":"D. Rapach, Fei Tan","doi":"10.2139/ssrn.3469356","DOIUrl":null,"url":null,"abstract":"We develop a Bayesian Markov chain Monte Carlo algorithm for estimating risk premia in dynamic stochastic general equilibrium (DSGE) models with stochastic volatility. Our approach is fully Bayesian and employs an affine solution strategy that makes estimation of large-scale DSGE models computationally feasible. We use our algorithm to estimate the US equity risk premium in a DSGE model that includes time-preference, technology, investment, and volatility shocks. Time-preference and technology shocks are primarily responsible for the sizable equity risk premium in the estimated DSGE model. The estimated historical stochastic volatility and equity risk premium series display pronounced countercyclical fluctuations.","PeriodicalId":11757,"journal":{"name":"ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3469356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a Bayesian Markov chain Monte Carlo algorithm for estimating risk premia in dynamic stochastic general equilibrium (DSGE) models with stochastic volatility. Our approach is fully Bayesian and employs an affine solution strategy that makes estimation of large-scale DSGE models computationally feasible. We use our algorithm to estimate the US equity risk premium in a DSGE model that includes time-preference, technology, investment, and volatility shocks. Time-preference and technology shocks are primarily responsible for the sizable equity risk premium in the estimated DSGE model. The estimated historical stochastic volatility and equity risk premium series display pronounced countercyclical fluctuations.
具有随机波动率的宏观金融DSGE模型的贝叶斯估计
针对具有随机波动率的动态随机一般均衡(DSGE)模型,提出了一种估计风险溢价的贝叶斯马尔可夫链蒙特卡罗算法。我们的方法是完全贝叶斯的,并采用仿射解决策略,使大规模DSGE模型的估计在计算上可行。我们使用我们的算法在DSGE模型中估计美国股票风险溢价,该模型包括时间偏好、技术、投资和波动冲击。在估计的DSGE模型中,时间偏好和技术冲击是造成相当大的股权风险溢价的主要原因。估计的历史随机波动率和股票风险溢价序列显示明显的逆周期波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信