On a conjecture of Lovász on circle-representations of simple 4-regular planar graphs

IF 0.4 Q4 MATHEMATICS
M. Bekos, Chrysanthi N. Raftopoulou
{"title":"On a conjecture of Lovász on circle-representations of simple 4-regular planar graphs","authors":"M. Bekos, Chrysanthi N. Raftopoulou","doi":"10.20382/jocg.v6i1a1","DOIUrl":null,"url":null,"abstract":"Lovasz conjectured that every connected 4-regular planar graph G admits a realization as a system of circles, i.e., it can be drawn on the plane utilizing a set of circles, such that the vertices of G correspond to the intersection and touching points of the circles and the edges of G are the arc segments among pairs of intersection and touching points of the circles. In this paper, (a) we affirmatively answer Lovasz's conjecture, if G is 3-connected, and, (b) we demonstrate an infinite class of connected 4-regular planar graphs which are not 3-connected and do not admit a realization as a system of circles.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"9 2-4 1","pages":"138-149"},"PeriodicalIF":0.4000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v6i1a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

Lovasz conjectured that every connected 4-regular planar graph G admits a realization as a system of circles, i.e., it can be drawn on the plane utilizing a set of circles, such that the vertices of G correspond to the intersection and touching points of the circles and the edges of G are the arc segments among pairs of intersection and touching points of the circles. In this paper, (a) we affirmatively answer Lovasz's conjecture, if G is 3-connected, and, (b) we demonstrate an infinite class of connected 4-regular planar graphs which are not 3-connected and do not admit a realization as a system of circles.
关于简单四正则平面图的圆表示的一个猜想Lovász
Lovasz推测,每一个连通的四正则平面图G都可以实现为一个圆的系统,即可以利用一组圆在平面上画出来,G的顶点对应于圆的交点和接触点,G的边是圆的交点和接触点对之间的弧段。在本文中,(a)我们肯定地回答了Lovasz的猜想,如果G是3连通的,(b)我们证明了一个无限类的连通的4正则平面图,它们不是3连通的,并且不承认圆系的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信