No eigenvalues outside the support of the limiting spectral distribution of quaternion sample covariance matrices

IF 0.9 4区 数学 Q4 PHYSICS, MATHEMATICAL
Huiqin Li
{"title":"No eigenvalues outside the support of the limiting spectral distribution of quaternion sample covariance matrices","authors":"Huiqin Li","doi":"10.1142/s2010326321500039","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the spectral properties of quaternion sample covariance matrices. Let [Formula: see text], where [Formula: see text] is the square root of a [Formula: see text] quaternion Hermitian non-negative definite matrix [Formula: see text] and [Formula: see text] is a [Formula: see text] matrix consisting of i.i.d. standard quaternion entries. Under the framework of random matrix theory, i.e. [Formula: see text] as [Formula: see text], we prove that if the fourth moment of the entries is finite, then there will almost surely be no eigenvalues that appear in any closed interval outside the support of the limiting distribution as [Formula: see text].","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we consider the spectral properties of quaternion sample covariance matrices. Let [Formula: see text], where [Formula: see text] is the square root of a [Formula: see text] quaternion Hermitian non-negative definite matrix [Formula: see text] and [Formula: see text] is a [Formula: see text] matrix consisting of i.i.d. standard quaternion entries. Under the framework of random matrix theory, i.e. [Formula: see text] as [Formula: see text], we prove that if the fourth moment of the entries is finite, then there will almost surely be no eigenvalues that appear in any closed interval outside the support of the limiting distribution as [Formula: see text].
在四元数样本协方差矩阵的极限谱分布支持之外没有特征值
本文研究了四元数样本协方差矩阵的谱性质。设[公式:见文],其中[公式:见文]是[公式:见文]四元数的平方根[公式:见文]厄米非负定矩阵[公式:见文],[公式:见文]是由i.d个标准四元数项组成的[公式:见文]矩阵。在随机矩阵理论的框架下,即[公式:见文]为[公式:见文],我们证明了如果条目的第四阶矩是有限的,那么在极限分布支持之外的任何封闭区间内几乎肯定不会出现特征值[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Matrices-Theory and Applications
Random Matrices-Theory and Applications Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
11.10%
发文量
29
期刊介绍: Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics. Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory. Special issues devoted to single topic of current interest will also be considered and published in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信