Sub-Gaussian random variables and Wiman's inequality for analytic functions

IF 1 Q1 MATHEMATICS
A. Kuryliak, O. Skaskiv
{"title":"Sub-Gaussian random variables and Wiman's inequality for analytic functions","authors":"A. Kuryliak, O. Skaskiv","doi":"10.15330/cmp.15.1.306-314","DOIUrl":null,"url":null,"abstract":"Let $f$ be an analytic function in $\\{z: |z|<R\\}$ of the form $f(z)=\\sum\\limits_{n=0}^{+\\infty}a_n z^n$. In the paper, we consider the Wiman-type inequality for random analytic functions of the form $f(z,\\omega)=\\sum\\limits_{n=0}^{+\\infty}Z_n(\\omega)a_nz^n$, where $(Z_n)$ is a sequence on the Steinhaus probability space of real independent centered sub-Gaussian random variables, i.e. $(\\exists D>0)(\\forall k\\in\\mathbb{N})(\\forall \\lambda\\in\\mathbb{R})\\colon \\mathbf{E}(e^{\\lambda Z_k})\\leq e^{D \\lambda^2}$, and such that $(\\exists\\beta>0)(\\exists n_0\\in\\mathbb{N})\\colon \\inf\\limits_{n\\geq n_0}\\mathbf{E}|Z_n|^{-\\beta}<+\\infty.$ \nIt is proved that for every $\\delta>0$ there exists a set $E(\\delta)\\subset [0,R)$ of finite $h$-logarithmic measure (i.e. $\\int\\nolimits_{E}h(r)d\\ln r<+\\infty$) such that almost surely for all $r\\in(r_0(\\omega),R)\\backslash E$ we have \\[ M_f(r,\\omega):=\\max\\big\\{|f(z,\\omega)|\\colon |z|=r\\big\\}\\leq \\sqrt{h(r)}\\mu_f(r)\\Big(\\ln^3h(r)\\ln\\{h(r)\\mu_f(r)\\}\\Big)^{1/4+\\delta}, \\] where $h(r)$ is any fixed continuous non-decreasing function on $[0;R)$ such that $h(r)\\geq2$ for all $r\\in (0,R)$ and $\\int^R_{r_{0}} h(r) d\\ln r =+\\infty$ for some $r_0\\in(0,R)$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.306-314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $f$ be an analytic function in $\{z: |z|0)(\forall k\in\mathbb{N})(\forall \lambda\in\mathbb{R})\colon \mathbf{E}(e^{\lambda Z_k})\leq e^{D \lambda^2}$, and such that $(\exists\beta>0)(\exists n_0\in\mathbb{N})\colon \inf\limits_{n\geq n_0}\mathbf{E}|Z_n|^{-\beta}<+\infty.$ It is proved that for every $\delta>0$ there exists a set $E(\delta)\subset [0,R)$ of finite $h$-logarithmic measure (i.e. $\int\nolimits_{E}h(r)d\ln r<+\infty$) such that almost surely for all $r\in(r_0(\omega),R)\backslash E$ we have \[ M_f(r,\omega):=\max\big\{|f(z,\omega)|\colon |z|=r\big\}\leq \sqrt{h(r)}\mu_f(r)\Big(\ln^3h(r)\ln\{h(r)\mu_f(r)\}\Big)^{1/4+\delta}, \] where $h(r)$ is any fixed continuous non-decreasing function on $[0;R)$ such that $h(r)\geq2$ for all $r\in (0,R)$ and $\int^R_{r_{0}} h(r) d\ln r =+\infty$ for some $r_0\in(0,R)$.
解析函数的亚高斯随机变量和Wiman不等式
设$f$为$\{z: |z|0)(\forall k\in\mathbb{N})(\forall \lambda\in\mathbb{R})\colon \mathbf{E}(e^{\lambda Z_k})\leq e^{D \lambda^2}$中的解析函数,使得$(\exists\beta>0)(\exists n_0\in\mathbb{N})\colon \inf\limits_{n\geq n_0}\mathbf{E}|Z_n|^{-\beta}0$存在一个有限的$h$对数测度(即$\int\nolimits_{E}h(r)d\ln r<+\infty$)的集合$E(\delta)\subset [0,R)$,使得几乎可以肯定,对于所有$r\in(r_0(\omega),R)\backslash E$,我们有\[ M_f(r,\omega):=\max\big\{|f(z,\omega)|\colon |z|=r\big\}\leq \sqrt{h(r)}\mu_f(r)\Big(\ln^3h(r)\ln\{h(r)\mu_f(r)\}\Big)^{1/4+\delta}, \],其中$h(r)$是$[0;R)$上任何固定的连续非递减函数,使得$h(r)\geq2$对所有$r\in (0,R)$, $\int^R_{r_{0}} h(r) d\ln r =+\infty$对某些$r_0\in(0,R)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信