Skyrmionic implementation of Spike Time Dependent Plasticity (STDP) enabled Spiking Neural Network (SNN) under supervised learning scheme

U. Sahu, Kushaagra Goyal, Utkarsh Saxena, T. Chavan, U. Ganguly, D. Bhowmik
{"title":"Skyrmionic implementation of Spike Time Dependent Plasticity (STDP) enabled Spiking Neural Network (SNN) under supervised learning scheme","authors":"U. Sahu, Kushaagra Goyal, Utkarsh Saxena, T. Chavan, U. Ganguly, D. Bhowmik","doi":"10.1109/icee44586.2018.8937850","DOIUrl":null,"url":null,"abstract":"Hardware implementation of Artificial Neural Network (ANN) algorithms, which are being currently used widely by the data sciences community, provides advantages of memory-computing intertwining, high speed and low energy dissipation which software implementation of the same does not have. In this paper, we simulate a spintronic hardware implementation of a third generation neural network - Spike Time Dependent Plasticity (STDP) learning enabled Spiking Neural Network (SNN), which is closer to functioning of the brain than most other ANN-s. Spin orbit torque driven skyrmionic device, driven by a transistor based circuit to enable STDP, is used as a synapse here. We use a combination of micromagnetic simulations, transistor circuit simulations and implementation of SNN algorithm in a numerical package to simulate our skyrmionic SNN. We train the skyrmionic SNN on different datasets under a supervised learning scheme and calculate the energy dissipated in updating the weights of the synapses in order to train the network.","PeriodicalId":6590,"journal":{"name":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","volume":"80 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee44586.2018.8937850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hardware implementation of Artificial Neural Network (ANN) algorithms, which are being currently used widely by the data sciences community, provides advantages of memory-computing intertwining, high speed and low energy dissipation which software implementation of the same does not have. In this paper, we simulate a spintronic hardware implementation of a third generation neural network - Spike Time Dependent Plasticity (STDP) learning enabled Spiking Neural Network (SNN), which is closer to functioning of the brain than most other ANN-s. Spin orbit torque driven skyrmionic device, driven by a transistor based circuit to enable STDP, is used as a synapse here. We use a combination of micromagnetic simulations, transistor circuit simulations and implementation of SNN algorithm in a numerical package to simulate our skyrmionic SNN. We train the skyrmionic SNN on different datasets under a supervised learning scheme and calculate the energy dissipated in updating the weights of the synapses in order to train the network.
在监督学习方案下,Skyrmionic实现了峰值时间依赖可塑性(STDP)的峰值神经网络(SNN)
人工神经网络(Artificial Neural Network, ANN)算法是目前数据科学界广泛使用的一种算法,其硬件实现具有软件实现所不具备的内存计算交织、高速和低能耗等优点。在本文中,我们模拟了第三代神经网络的自旋电子硬件实现- Spike Time Dependent Plasticity (STDP) learning - enabled Spike neural network (SNN),它比大多数其他ANN-s更接近大脑的功能。自旋轨道转矩驱动的skyronic器件,由基于晶体管的电路驱动以实现STDP,在这里用作突触。我们使用微磁模拟、晶体管电路模拟和SNN算法在数值封装中的实现相结合来模拟我们的skyrmionic SNN。我们在监督学习方案下在不同的数据集上训练skyrmionic SNN,并计算更新突触权值所消耗的能量以训练网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信