2D+t autoregressive framework for video texture completion

Fabien Racapé, D. Doshkov, Martin Köppel, P. Ndjiki-Nya
{"title":"2D+t autoregressive framework for video texture completion","authors":"Fabien Racapé, D. Doshkov, Martin Köppel, P. Ndjiki-Nya","doi":"10.1109/ICIP.2014.7025944","DOIUrl":null,"url":null,"abstract":"In this paper, an improved 2D+t texture completion framework is proposed, providing high visual quality of completed dynamic textures. A Spatiotemporal Autoregressive model (STAR) is used to propagate the signal of several available frames onto frames containing missing textures. A Gaussian white noise classically drives the model to enable texture innovation. To improve this method, an innovation process is proposed, that uses texture information from available training frames. The proposed method is deterministic, which solves a key problem for applications such as synthesis-based video coding. Compression simulations show potential bitrate savings up to 49% on texture sequences at comparable visual quality. Video results are provided online to allow assessing the visual quality of completed textures.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"7 1","pages":"4657-4661"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, an improved 2D+t texture completion framework is proposed, providing high visual quality of completed dynamic textures. A Spatiotemporal Autoregressive model (STAR) is used to propagate the signal of several available frames onto frames containing missing textures. A Gaussian white noise classically drives the model to enable texture innovation. To improve this method, an innovation process is proposed, that uses texture information from available training frames. The proposed method is deterministic, which solves a key problem for applications such as synthesis-based video coding. Compression simulations show potential bitrate savings up to 49% on texture sequences at comparable visual quality. Video results are provided online to allow assessing the visual quality of completed textures.
视频纹理补全的2D+t自回归框架
本文提出了一种改进的2D+t纹理补全框架,提供了高视觉质量的补全动态纹理。利用时空自回归模型(STAR)将若干可用帧的信号传播到包含缺失纹理的帧上。经典的高斯白噪声驱动模型实现纹理创新。为了改进该方法,提出了一种利用现有训练帧的纹理信息的创新过程。该方法具有确定性,解决了基于合成的视频编码等应用中的关键问题。压缩模拟显示,在相当的视觉质量下,纹理序列的潜在比特率节省高达49%。视频结果提供在线,以允许评估完成纹理的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信