{"title":"Cross-ratio distortion and Douady–Earle extension: III. How to control the dilatation near the origin","authors":"Jun Hu, Oleg Muzician","doi":"10.5186/AASFM.2019.4432","DOIUrl":null,"url":null,"abstract":"In this paper, we study how the maximal dilatation of the Douady–Earle extension near the origin is controlled by the distortion of the boundary map on finitely many points. Consider the case of points evenly spread on the circle. We show that the maximal dilatation of the extension in a neighborhood of the origin has an upper bound only depending on the cross-ratio distortion of the boundary map on these points if and only if the number n of the points is more than 4. Furthermore, we show that the size of the neighborhood is universal for each n ≥ 5 in the sense that its size only depends on the distortion.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4432","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we study how the maximal dilatation of the Douady–Earle extension near the origin is controlled by the distortion of the boundary map on finitely many points. Consider the case of points evenly spread on the circle. We show that the maximal dilatation of the extension in a neighborhood of the origin has an upper bound only depending on the cross-ratio distortion of the boundary map on these points if and only if the number n of the points is more than 4. Furthermore, we show that the size of the neighborhood is universal for each n ≥ 5 in the sense that its size only depends on the distortion.
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.