{"title":"Incorporating Public Participation in Offshore Wind Farm Siting in Greece","authors":"E. Loukogeorgaki, D. Vagiona, Areti Lioliou","doi":"10.3390/wind2010001","DOIUrl":null,"url":null,"abstract":"The public acceptance of Offshore Wind Farms (OWFs) is an important issue that is expected to depend highly on their site location. Public involvement in decision-making processes is recommended as it may contribute to the mitigation of opposing, delaying and even blocking OWF projects, as well as increasing future public confidence and support. The aim of this study is to identify the most suitable sites for OWFs deployment in Greece based on citizens’ preferences and judgments. The methodology consists of three phases: (i) identification of Eligible Marine Areas (EMAs) for OWF siting by deploying ten exclusion criteria, (ii) prioritization of six evaluation criteria and ranking of EMAs according to citizens’ judgments through an Online Questionnaire Survey (OQS) and (iii) overall prioritization of EMAs. The Analytic Hierarchy Process (AHP), supported by Geographic Information Systems (GIS) and the OQS are used for the analysis. The results illustrate the priority ranking of thirteen EMAs for OWFs deployment in the Greek marine environment under five different scenarios. The most suitable sites are located in the South-West zone offshore of Rhodes in all the examined scenarios. Sustainable development is a challenging social process, and the different preferences of the society should be integrated in planning processes.","PeriodicalId":51210,"journal":{"name":"Wind and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/wind2010001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The public acceptance of Offshore Wind Farms (OWFs) is an important issue that is expected to depend highly on their site location. Public involvement in decision-making processes is recommended as it may contribute to the mitigation of opposing, delaying and even blocking OWF projects, as well as increasing future public confidence and support. The aim of this study is to identify the most suitable sites for OWFs deployment in Greece based on citizens’ preferences and judgments. The methodology consists of three phases: (i) identification of Eligible Marine Areas (EMAs) for OWF siting by deploying ten exclusion criteria, (ii) prioritization of six evaluation criteria and ranking of EMAs according to citizens’ judgments through an Online Questionnaire Survey (OQS) and (iii) overall prioritization of EMAs. The Analytic Hierarchy Process (AHP), supported by Geographic Information Systems (GIS) and the OQS are used for the analysis. The results illustrate the priority ranking of thirteen EMAs for OWFs deployment in the Greek marine environment under five different scenarios. The most suitable sites are located in the South-West zone offshore of Rhodes in all the examined scenarios. Sustainable development is a challenging social process, and the different preferences of the society should be integrated in planning processes.
期刊介绍:
The WIND AND STRUCTURES, An International Journal, aims at: - Major publication channel for research in the general area of wind and structural engineering, - Wider distribution at more affordable subscription rates; - Faster reviewing and publication for manuscripts submitted.
The main theme of the Journal is the wind effects on structures. Areas covered by the journal include:
Wind loads and structural response,
Bluff-body aerodynamics,
Computational method,
Wind tunnel modeling,
Local wind environment,
Codes and regulations,
Wind effects on large scale structures.