Event Pattern Constructing Technique for Prediction of Violations in Technological Processes

Yana A. Bekeneva, I. Kholod, E. Novikova, Denis Shevelev, A. Shorov
{"title":"Event Pattern Constructing Technique for Prediction of Violations in Technological Processes","authors":"Yana A. Bekeneva, I. Kholod, E. Novikova, Denis Shevelev, A. Shorov","doi":"10.1109/EICONRUS.2019.8656901","DOIUrl":null,"url":null,"abstract":"The problem of the prediction of violations in business processes is considered in the paper. The authors suggest application of the frequent item sets mining technique for analysis of the event streams. This approach allows investigation of the event sequences and revealing of the event sequences which lead to the violations. The detected violation patterns then could be used for monitoring data in the real time mode. The proposed technique could be applied when analyzing data from sensors of different type and used in distributed systems. The method is able to predict a violation before it occurs avoiding thus dangerous situations.","PeriodicalId":6748,"journal":{"name":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"22 1","pages":"182-186"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2019.8656901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of the prediction of violations in business processes is considered in the paper. The authors suggest application of the frequent item sets mining technique for analysis of the event streams. This approach allows investigation of the event sequences and revealing of the event sequences which lead to the violations. The detected violation patterns then could be used for monitoring data in the real time mode. The proposed technique could be applied when analyzing data from sensors of different type and used in distributed systems. The method is able to predict a violation before it occurs avoiding thus dangerous situations.
工艺过程中违规预测的事件模式构建技术
本文研究了业务流程中违规行为的预测问题。作者建议应用频繁项集挖掘技术对事件流进行分析。这种方法允许调查事件序列并揭示导致违规的事件序列。然后将检测到的违规模式用于实时监控数据。该方法可应用于分布式系统中不同类型传感器的数据分析。该方法能够在违规发生之前预测违规行为,避免出现危险情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信