HomeRun

Chih-Kai Kang, Chun-Han Lin, P. Hsiu, Ming-Syan Chen
{"title":"HomeRun","authors":"Chih-Kai Kang, Chun-Han Lin, P. Hsiu, Ming-Syan Chen","doi":"10.1145/3218603.3218633","DOIUrl":null,"url":null,"abstract":"Self-powered intermittent systems featuring nonvolatile processors (NVPs) allow for accumulative execution in unstable power environments. However, frequent power failures may cause incorrect NVP execution results due to invalid data generated intermittently. This paper presents a HW/SW co-design, called HomeRun, to guarantee atomicity by ensuring that an uninterruptible program section can be run through at one execution. We design a HW module to ensure that a power pulse is sufficient for an atomic section, and develop a SW mechanism for programmers to protect atomic sections. The proposed design is validated through the development of a prototype pattern locking system. Experimental results demonstrate that the proposed design can completely guarantee atomicity and significantly improve the energy utilization of self-powered intermittent systems.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Self-powered intermittent systems featuring nonvolatile processors (NVPs) allow for accumulative execution in unstable power environments. However, frequent power failures may cause incorrect NVP execution results due to invalid data generated intermittently. This paper presents a HW/SW co-design, called HomeRun, to guarantee atomicity by ensuring that an uninterruptible program section can be run through at one execution. We design a HW module to ensure that a power pulse is sufficient for an atomic section, and develop a SW mechanism for programmers to protect atomic sections. The proposed design is validated through the development of a prototype pattern locking system. Experimental results demonstrate that the proposed design can completely guarantee atomicity and significantly improve the energy utilization of self-powered intermittent systems.
全垒打
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信