{"title":"n-valued maximal paraconsistent matrices","authors":"A. Trybus","doi":"10.1080/11663081.2019.1578602","DOIUrl":null,"url":null,"abstract":"ABSTRACT The articles Maximality and Refutability Skura [(2004). Maximality and refutability. Notre Dame Journal of Formal Logic, 45, 65–72] and Three-valued Maximal Paraconsistent Logics Skura and Tuziak [(2005). Three-valued maximal paraconsistent logics. In Logika (Vol. 23). Wydawnictwo Uniwersytetu Wrocławskiego] introduced a simple method of proving maximality (in the two distinguished senses) of a given paraconsistent matrix. This method stemmed from the so-called refutation calculus, where the focus in on rejecting rather than accepting formulas. The article A Generalisation of a Refutation-related Method in Paraconsistent Logics Trybus [(2018). A generalisation of a refutation-related method in paraconsistent logics. Logic and Logical Philosophy, 27(2). doi:10.12775/LLP.2018.002] was a first step towards generalising the method. In it, a number of 3-valued paraconsistent matrices were shown maximal. In this article we extend these results to cover a number of n-valued (n>2) paraconsistent matrices using the same method.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"12 1","pages":"171 - 183"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2019.1578602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The articles Maximality and Refutability Skura [(2004). Maximality and refutability. Notre Dame Journal of Formal Logic, 45, 65–72] and Three-valued Maximal Paraconsistent Logics Skura and Tuziak [(2005). Three-valued maximal paraconsistent logics. In Logika (Vol. 23). Wydawnictwo Uniwersytetu Wrocławskiego] introduced a simple method of proving maximality (in the two distinguished senses) of a given paraconsistent matrix. This method stemmed from the so-called refutation calculus, where the focus in on rejecting rather than accepting formulas. The article A Generalisation of a Refutation-related Method in Paraconsistent Logics Trybus [(2018). A generalisation of a refutation-related method in paraconsistent logics. Logic and Logical Philosophy, 27(2). doi:10.12775/LLP.2018.002] was a first step towards generalising the method. In it, a number of 3-valued paraconsistent matrices were shown maximal. In this article we extend these results to cover a number of n-valued (n>2) paraconsistent matrices using the same method.
文章的极大性和可辩驳性Skura[2004]。极大性和可辩驳性。三值最大副协调逻辑Skura and Tuziak[2005]。三值最大副一致逻辑。在洛吉卡(第23卷)。Wydawnictwo Uniwersytetu Wrocławskiego]介绍了一种简单的方法来证明一个给定的副一致矩阵的极大性(在两种不同的意义上)。这种方法源于所谓的反驳演算,其重点是拒绝而不是接受公式。文章《副一致逻辑中一种与反驳相关的方法的推广》[(2018)。副一致逻辑中与反驳有关的方法的推广。逻辑与逻辑哲学,27(2)。[doi:10.12775/LLP.2018.002]是推广该方法的第一步。在此模型中,证明了一些3值副相容矩阵的极大性。在本文中,我们使用相同的方法将这些结果扩展到一些n值(n>2)的准一致矩阵。