{"title":"Design and simulation of microcantilevers for detection of pathogens","authors":"Bhagyashri Gharge, V. Upadhye, D. Bodas","doi":"10.1109/ISPTS.2015.7220122","DOIUrl":null,"url":null,"abstract":"This paper presents the design simulations of MEMS based micro-cantilever beam made up of PDMS properties using COMSOL Multiphysics. The cantilever beam structure on fluid Channel has been simulated. The simulations results into the stress, displacement, The study brings out a novel methodology for detection of pathogens at minute level. The in-flow methodology enables the device to be used in online monitoring of water as well as food products. The detection methodology can be employed to detect antigens with higher sensitivity. The changes in the sensitivity of a cantilever beam with respect to change in its dimensions for the same applied force are denoted.","PeriodicalId":6520,"journal":{"name":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","volume":"54 1","pages":"249-252"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2015.7220122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the design simulations of MEMS based micro-cantilever beam made up of PDMS properties using COMSOL Multiphysics. The cantilever beam structure on fluid Channel has been simulated. The simulations results into the stress, displacement, The study brings out a novel methodology for detection of pathogens at minute level. The in-flow methodology enables the device to be used in online monitoring of water as well as food products. The detection methodology can be employed to detect antigens with higher sensitivity. The changes in the sensitivity of a cantilever beam with respect to change in its dimensions for the same applied force are denoted.