A Modified Logistic Regression for Positive and Unlabeled Learning

Kristen Jaskie, C. Elkan, A. Spanias
{"title":"A Modified Logistic Regression for Positive and Unlabeled Learning","authors":"Kristen Jaskie, C. Elkan, A. Spanias","doi":"10.1109/IEEECONF44664.2019.9048765","DOIUrl":null,"url":null,"abstract":"The positive and unlabeled learning problem is a semi-supervised binary classification problem. In PU learning, only an unknown percentage of positive samples are known, while the remaining samples, both positive and negative, are unknown. We wish to learn a decision boundary that separates the positive and negative data distributions. In this paper, we build on an existing popular probabilistic positive unlabeled learning algorithm and introduce a new modified logistic regression learner with a variable upper bound that we argue provides a better theoretical solution for this problem. We then apply this solution to both simulated data and to a simple image classification problem using the MNIST dataset with significantly improved results.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"99 1","pages":"2007-2011"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The positive and unlabeled learning problem is a semi-supervised binary classification problem. In PU learning, only an unknown percentage of positive samples are known, while the remaining samples, both positive and negative, are unknown. We wish to learn a decision boundary that separates the positive and negative data distributions. In this paper, we build on an existing popular probabilistic positive unlabeled learning algorithm and introduce a new modified logistic regression learner with a variable upper bound that we argue provides a better theoretical solution for this problem. We then apply this solution to both simulated data and to a simple image classification problem using the MNIST dataset with significantly improved results.
一种改进的逻辑回归方法用于正学习和无标签学习
正无标签学习问题是一个半监督二分类问题。在PU学习中,只有未知百分比的阳性样本是已知的,而剩余的阳性和阴性样本都是未知的。我们希望学习一个区分正数据分布和负数据分布的决策边界。在本文中,我们在现有的一种流行的概率正无标记学习算法的基础上,引入了一种新的改进的逻辑回归学习算法,该算法具有可变上界,我们认为该算法为该问题提供了更好的理论解决方案。然后,我们将该解决方案应用于模拟数据和使用MNIST数据集的简单图像分类问题,结果显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信