Non-uniform sampling and Gaussian process regression in transport of intensity phase imaging

Jingshan Zhong, Rene A. Claus, J. Dauwels, L. Tian, L. Waller
{"title":"Non-uniform sampling and Gaussian process regression in transport of intensity phase imaging","authors":"Jingshan Zhong, Rene A. Claus, J. Dauwels, L. Tian, L. Waller","doi":"10.1109/ICASSP.2014.6855115","DOIUrl":null,"url":null,"abstract":"Gaussian process (GP) regression is a nonparametric regression method that can be used to predict continuous quantities. Here, we show that the same technique can be applied to a class of phase imaging techniques based on measurements of intensity at multiple propagation distances, i.e. the transport of intensity equation (TIE). In this paper, we demonstrate how to apply GP regression to estimate the first intensity derivative along the direction of propagation and incorporate non-uniform propagation distance sampling. The low-frequency artifacts that often occur in phase recovery using traditional methods can be significantly suppressed by the proposed GP TIE method. The method is shown to be stable with moderate amounts of Gaussian noise. We validate the method experimentally by recovering the phase of human cheek cells in a bright field microscope and show better performance as compared to other TIE reconstruction methods.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"105 1","pages":"7784-7788"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6855115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gaussian process (GP) regression is a nonparametric regression method that can be used to predict continuous quantities. Here, we show that the same technique can be applied to a class of phase imaging techniques based on measurements of intensity at multiple propagation distances, i.e. the transport of intensity equation (TIE). In this paper, we demonstrate how to apply GP regression to estimate the first intensity derivative along the direction of propagation and incorporate non-uniform propagation distance sampling. The low-frequency artifacts that often occur in phase recovery using traditional methods can be significantly suppressed by the proposed GP TIE method. The method is shown to be stable with moderate amounts of Gaussian noise. We validate the method experimentally by recovering the phase of human cheek cells in a bright field microscope and show better performance as compared to other TIE reconstruction methods.
强度相位成像传输中的非均匀采样和高斯过程回归
高斯过程回归是一种用于预测连续量的非参数回归方法。在这里,我们展示了同样的技术可以应用于一类基于在多个传播距离上测量强度的相位成像技术,即强度传输方程(TIE)。在本文中,我们演示了如何应用GP回归沿传播方向估计第一强度导数,并结合非均匀传播距离采样。采用传统的相位恢复方法,可以有效地抑制低频伪影。结果表明,该方法在适度的高斯噪声下是稳定的。我们通过在明光场显微镜下恢复人类脸颊细胞的相位实验验证了该方法,并显示出与其他TIE重建方法相比更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信