{"title":"FISM: factored item similarity models for top-N recommender systems","authors":"Santosh Kabbur, Xia Ning, G. Karypis","doi":"10.1145/2487575.2487589","DOIUrl":null,"url":null,"abstract":"The effectiveness of existing top-N recommendation methods decreases as the sparsity of the datasets increases. To alleviate this problem, we present an item-based method for generating top-N recommendations that learns the item-item similarity matrix as the product of two low dimensional latent factor matrices. These matrices are learned using a structural equation modeling approach, wherein the value being estimated is not used for its own estimation. A comprehensive set of experiments on multiple datasets at three different sparsity levels indicate that the proposed methods can handle sparse datasets effectively and outperforms other state-of-the-art top-N recommendation methods. The experimental results also show that the relative performance gains compared to competing methods increase as the data gets sparser.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"622","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 622
Abstract
The effectiveness of existing top-N recommendation methods decreases as the sparsity of the datasets increases. To alleviate this problem, we present an item-based method for generating top-N recommendations that learns the item-item similarity matrix as the product of two low dimensional latent factor matrices. These matrices are learned using a structural equation modeling approach, wherein the value being estimated is not used for its own estimation. A comprehensive set of experiments on multiple datasets at three different sparsity levels indicate that the proposed methods can handle sparse datasets effectively and outperforms other state-of-the-art top-N recommendation methods. The experimental results also show that the relative performance gains compared to competing methods increase as the data gets sparser.