FISM: factored item similarity models for top-N recommender systems

Santosh Kabbur, Xia Ning, G. Karypis
{"title":"FISM: factored item similarity models for top-N recommender systems","authors":"Santosh Kabbur, Xia Ning, G. Karypis","doi":"10.1145/2487575.2487589","DOIUrl":null,"url":null,"abstract":"The effectiveness of existing top-N recommendation methods decreases as the sparsity of the datasets increases. To alleviate this problem, we present an item-based method for generating top-N recommendations that learns the item-item similarity matrix as the product of two low dimensional latent factor matrices. These matrices are learned using a structural equation modeling approach, wherein the value being estimated is not used for its own estimation. A comprehensive set of experiments on multiple datasets at three different sparsity levels indicate that the proposed methods can handle sparse datasets effectively and outperforms other state-of-the-art top-N recommendation methods. The experimental results also show that the relative performance gains compared to competing methods increase as the data gets sparser.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"622","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 622

Abstract

The effectiveness of existing top-N recommendation methods decreases as the sparsity of the datasets increases. To alleviate this problem, we present an item-based method for generating top-N recommendations that learns the item-item similarity matrix as the product of two low dimensional latent factor matrices. These matrices are learned using a structural equation modeling approach, wherein the value being estimated is not used for its own estimation. A comprehensive set of experiments on multiple datasets at three different sparsity levels indicate that the proposed methods can handle sparse datasets effectively and outperforms other state-of-the-art top-N recommendation methods. The experimental results also show that the relative performance gains compared to competing methods increase as the data gets sparser.
top-N推荐系统的因子项目相似度模型
现有top-N推荐方法的有效性随着数据集稀疏度的增加而降低。为了缓解这个问题,我们提出了一种基于项目的方法来生成top-N推荐,该方法将项目-项目相似性矩阵作为两个低维潜在因素矩阵的乘积来学习。这些矩阵是使用结构方程建模方法学习的,其中被估计的值不用于其自身的估计。在三个不同稀疏度级别的多个数据集上进行的一组综合实验表明,所提出的方法可以有效地处理稀疏数据集,并且优于其他最先进的top-N推荐方法。实验结果还表明,与竞争方法相比,相对性能增益随着数据的稀疏而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信