Positive and negative max pooling for image classification

Bin Wang, Yu Liu, Wenhua Xiao, Z. Xiong, Maojun Zhang
{"title":"Positive and negative max pooling for image classification","authors":"Bin Wang, Yu Liu, Wenhua Xiao, Z. Xiong, Maojun Zhang","doi":"10.1109/ICCE.2013.6486894","DOIUrl":null,"url":null,"abstract":"Max pooling has been regard as the best pooling method in image classification when image features are coded by sparse coding [2]. However, max pooling reduces the classification discrimination, since it doesn't distinguish the sign of coding coefficient but only selects the max absolute value. In order to increase the image representation discrimination, we preserve the sign of code coefficient and develop a feature pooling method named PN-Max pooling. Experimental results show that PN-Max pooling achieves higher image classification accuracy than Max pooling.","PeriodicalId":6432,"journal":{"name":"2013 IEEE International Conference on Consumer Electronics (ICCE)","volume":"56 1","pages":"278-279"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE.2013.6486894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Max pooling has been regard as the best pooling method in image classification when image features are coded by sparse coding [2]. However, max pooling reduces the classification discrimination, since it doesn't distinguish the sign of coding coefficient but only selects the max absolute value. In order to increase the image representation discrimination, we preserve the sign of code coefficient and develop a feature pooling method named PN-Max pooling. Experimental results show that PN-Max pooling achieves higher image classification accuracy than Max pooling.
正、负最大池化用于图像分类
在用稀疏编码[2]对图像特征进行编码时,最大池化被认为是图像分类中最好的池化方法。然而,最大池化减少了分类判别,因为它不区分编码系数的符号,而只选择最大绝对值。为了提高图像的表示判别能力,我们在保留码系数符号的基础上,提出了一种特征池化方法——PN-Max池化。实验结果表明,PN-Max池化比Max池化具有更高的图像分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信