Jiazhi Jiang, Dan Huang, Jiangsu Du, Yutong Lu, Xiangke Liao
{"title":"Optimizing small channel 3D convolution on GPU with tensor core","authors":"Jiazhi Jiang, Dan Huang, Jiangsu Du, Yutong Lu, Xiangke Liao","doi":"10.1016/j.parco.2022.102954","DOIUrl":null,"url":null,"abstract":"<div><p><span>In many scenarios, particularly scientific AI applications, algorithm engineers widely adopt more complex convolution, e.g. 3D </span>CNN<span>, to improve the accuracy. Scientific AI applications with 3D-CNN, which tends to train with volumetric datasets<span>, substantially increase the size of the input, which in turn potentially restricts the channel sizes (e.g. less than 64) under the constraints of limited device memory capacity. Since existing convolution implementations tend to split and parallelize computing the small channel convolution from channel dimension, they usually cannot fully exploit the performance of GPU accelerator, in particular that configured with the emerging tensor core.</span></span></p><p><span>In this work, we target on enhancing the performance of small channel 3D convolution on the GPU platform configured with tensor cores. Our analysis shows that the channel size of convolution has a great effect on the performance of existing convolution implementations, that are memory-bound on tensor core. By leveraging the memory hierarchy characteristics and the WMMA API of tensor core, we propose and implement holistic optimizations for both promoting the data access efficiency and intensifying the utilization of </span>computing units. Experiments show that our implementation can obtain 1.1x–5.4x speedup comparing to the cuDNN’s implementations for the 3D convolutions on different GPU platforms. We also evaluate our implementations on two practical scientific AI applications and observe up to 1.7x and 2.0x overall speedups compared with using cuDNN on V100 GPU.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"113 ","pages":"Article 102954"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000473","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4
Abstract
In many scenarios, particularly scientific AI applications, algorithm engineers widely adopt more complex convolution, e.g. 3D CNN, to improve the accuracy. Scientific AI applications with 3D-CNN, which tends to train with volumetric datasets, substantially increase the size of the input, which in turn potentially restricts the channel sizes (e.g. less than 64) under the constraints of limited device memory capacity. Since existing convolution implementations tend to split and parallelize computing the small channel convolution from channel dimension, they usually cannot fully exploit the performance of GPU accelerator, in particular that configured with the emerging tensor core.
In this work, we target on enhancing the performance of small channel 3D convolution on the GPU platform configured with tensor cores. Our analysis shows that the channel size of convolution has a great effect on the performance of existing convolution implementations, that are memory-bound on tensor core. By leveraging the memory hierarchy characteristics and the WMMA API of tensor core, we propose and implement holistic optimizations for both promoting the data access efficiency and intensifying the utilization of computing units. Experiments show that our implementation can obtain 1.1x–5.4x speedup comparing to the cuDNN’s implementations for the 3D convolutions on different GPU platforms. We also evaluate our implementations on two practical scientific AI applications and observe up to 1.7x and 2.0x overall speedups compared with using cuDNN on V100 GPU.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications