Optimization of poly (methyl methacrylate) as sacrificial layer for application in low temperature MEMS

Abhijeet Kshirsagar, S. Duttagupta, S. Gangal
{"title":"Optimization of poly (methyl methacrylate) as sacrificial layer for application in low temperature MEMS","authors":"Abhijeet Kshirsagar, S. Duttagupta, S. Gangal","doi":"10.1109/ISPTS.2012.6260894","DOIUrl":null,"url":null,"abstract":"The recent development in smart systems can benefit from the integration of MEMS and CMOS technology with emphasis on low temperature processing that utilizes low cost substrates. The main constraints in MEMS/IC process are high thermal budget and harsh chemical usage in the processing. Polymers are generally used in surface micromachining as sacrificial layers, but face a problem of high temperature (150–250°C) baking cycles and the cost associated with it. This paper reports an in-house preparation (optimized formulation) and optimization of PMMA solution with a view to solve the problem with high temperature processing. Surface micromachined silicon nitride cantilevers using PMMA as sacrificial layer is fabricated to prove its feasibility for low temperature MEMS applications.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":"10 1","pages":"114-117"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The recent development in smart systems can benefit from the integration of MEMS and CMOS technology with emphasis on low temperature processing that utilizes low cost substrates. The main constraints in MEMS/IC process are high thermal budget and harsh chemical usage in the processing. Polymers are generally used in surface micromachining as sacrificial layers, but face a problem of high temperature (150–250°C) baking cycles and the cost associated with it. This paper reports an in-house preparation (optimized formulation) and optimization of PMMA solution with a view to solve the problem with high temperature processing. Surface micromachined silicon nitride cantilevers using PMMA as sacrificial layer is fabricated to prove its feasibility for low temperature MEMS applications.
聚甲基丙烯酸甲酯作为牺牲层在低温微机电系统中的应用优化
智能系统的最新发展可以受益于MEMS和CMOS技术的集成,重点是利用低成本基板的低温加工。MEMS/IC工艺的主要限制是高热预算和苛刻的化学品使用。聚合物通常作为牺牲层用于表面微加工,但面临高温(150-250°C)烘烤周期和相关成本的问题。本文报道了PMMA溶液的内部制备(优化配方)和优化,以期解决高温加工问题。制备了以PMMA为牺牲层的表面微加工氮化硅悬臂梁,证明了其在低温MEMS应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信