An Approach of Position and Torque Estimation for Induction Motor based Sensor-less Drive

Q4 Engineering
A. Ahriche
{"title":"An Approach of Position and Torque Estimation for Induction Motor based Sensor-less Drive","authors":"A. Ahriche","doi":"10.46300/9106.2023.17.5","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach with stability analysis, simulation and experimental investigation of a sliding mode based estimator for rotor-position and torque-load calculation in high performance speed-sensor-less AC motor drive. The proposed algorithm is built based on the induction motor (IM) fluxes equations for two rotationg referential frames. The First equation calculates the stator flux vector while the second gives the rotor flux vector. Moreover, the stator flux equation is linked to a stator-flux rotating referential frame and the rotor flux equation is linked to a rotor-flux rotating referential frame. Among merits of the proposed technique is no necessity to rotor-speed measurement and adaptation. Thus, it is well suitable to the fully speed-sensorless scheme. The whole observer stability is verified by using of Lyapunov’s principle. Simulations are done by using Matlab-Simulink and experimental implementation is performed in order to prove the feasibility of proposed algorithm. The illustrated results are shown by using a DS1104 controller board.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2023.17.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new approach with stability analysis, simulation and experimental investigation of a sliding mode based estimator for rotor-position and torque-load calculation in high performance speed-sensor-less AC motor drive. The proposed algorithm is built based on the induction motor (IM) fluxes equations for two rotationg referential frames. The First equation calculates the stator flux vector while the second gives the rotor flux vector. Moreover, the stator flux equation is linked to a stator-flux rotating referential frame and the rotor flux equation is linked to a rotor-flux rotating referential frame. Among merits of the proposed technique is no necessity to rotor-speed measurement and adaptation. Thus, it is well suitable to the fully speed-sensorless scheme. The whole observer stability is verified by using of Lyapunov’s principle. Simulations are done by using Matlab-Simulink and experimental implementation is performed in order to prove the feasibility of proposed algorithm. The illustrated results are shown by using a DS1104 controller board.
基于感应电机无传感器驱动的位置和转矩估计方法
本文提出了一种基于滑模的估计器的稳定性分析、仿真和实验研究方法,用于高性能无速度传感器交流电机驱动的转子位置和转矩负载计算。该算法基于两个旋转参照系的感应电机磁链方程。第一个方程计算定子磁通矢量,第二个方程给出转子磁通矢量。将定子磁链方程与定子磁链旋转参照系联系起来,将转子磁链方程与转子磁链旋转参照系联系起来。该技术的优点之一是不需要进行转子转速的测量和自适应。因此,它非常适合于全速无传感器方案。利用李亚普诺夫原理验证了整个观测器的稳定性。利用Matlab-Simulink进行了仿真,并进行了实验实现,验证了所提算法的可行性。以DS1104控制板为例,给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信