Parameter-free motif discovery for time series data

Pawan Nunthanid, V. Niennattrakul, C. Ratanamahatana
{"title":"Parameter-free motif discovery for time series data","authors":"Pawan Nunthanid, V. Niennattrakul, C. Ratanamahatana","doi":"10.1109/ECTICON.2012.6254126","DOIUrl":null,"url":null,"abstract":"Time series motif discovery is an increasingly popular research area in time series mining whose main objective is to search for interesting patterns or motifs. A motif is a pair of time series subsequences, or two subsequences whose shapes are very similar to each other. Typical motif discovery algorithm requires a predefined motif length as its parameter. Discovering motif with arbitrary lengths introduces another problem, where selecting a suitable length for the motif is non-trivial since domain knowledge is often required. Thus, this work proposes a parameter-free motif discovery algorithm called k-Best Motif Discovery (kBMD) which requires no parameter as input, and as a result returns a set of all “Best Motif” that are ranked by our proposed scoring function which is based on similarity of motif locations and similarity of motif shapes.","PeriodicalId":6319,"journal":{"name":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"12 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2012.6254126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Time series motif discovery is an increasingly popular research area in time series mining whose main objective is to search for interesting patterns or motifs. A motif is a pair of time series subsequences, or two subsequences whose shapes are very similar to each other. Typical motif discovery algorithm requires a predefined motif length as its parameter. Discovering motif with arbitrary lengths introduces another problem, where selecting a suitable length for the motif is non-trivial since domain knowledge is often required. Thus, this work proposes a parameter-free motif discovery algorithm called k-Best Motif Discovery (kBMD) which requires no parameter as input, and as a result returns a set of all “Best Motif” that are ranked by our proposed scoring function which is based on similarity of motif locations and similarity of motif shapes.
时间序列数据的无参数基序发现
时间序列基序发现是时间序列挖掘中一个日益流行的研究领域,其主要目的是寻找有趣的模式或基序。基序是一对时间序列子序列,或两个形状非常相似的子序列。典型的motif发现算法需要一个预定义的motif长度作为参数。发现任意长度的基序引入了另一个问题,其中为基序选择合适的长度是非平凡的,因为通常需要领域知识。因此,这项工作提出了一种无参数的motif发现算法,称为k-Best motif discovery (kBMD),该算法不需要参数作为输入,结果返回一组由我们提出的基于motif位置相似性和motif形状相似性的评分函数排名的所有“最佳motif”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信