Modified Moments and Orthogonal Rational Functions†

J. Van Deun, A. Bultheel
{"title":"Modified Moments and Orthogonal Rational Functions†","authors":"J. Van Deun,&nbsp;A. Bultheel","doi":"10.1002/anac.200410009","DOIUrl":null,"url":null,"abstract":"<p>In a series of articles [9, 10, 11] about the numerical computation of orthogonal polynomials on a subset of the real line, Gautschi shows that computing orthogonal polynomials starting from the moments <i>μ<sub>k</sub></i> = ∫ <i>x<sup>k</sup>dμ</i>(<i>x</i>) of the measure is generally an ill-conditioned problem. However, in [10] an alternative approach is presented, based on so-called <i>modified</i> moments, which works better in certain situations. In this paper we generalize these results to the computation of orthogonal rational functions and provide a new modified moment algorithm, based on the connection between modified moments and interpolatory quadrature. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 2","pages":"455-468"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410009","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In a series of articles [9, 10, 11] about the numerical computation of orthogonal polynomials on a subset of the real line, Gautschi shows that computing orthogonal polynomials starting from the moments μk = ∫ xk(x) of the measure is generally an ill-conditioned problem. However, in [10] an alternative approach is presented, based on so-called modified moments, which works better in certain situations. In this paper we generalize these results to the computation of orthogonal rational functions and provide a new modified moment algorithm, based on the connection between modified moments and interpolatory quadrature. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

修正矩与正交有理函数
在一系列关于实线子集上正交多项式数值计算的文章[9,10,11]中,Gautschi表明,从度量的矩μk =∫xkdμ(x)开始计算正交多项式通常是一个病态问题。然而,在b[10]中提出了一种基于所谓修正矩的替代方法,它在某些情况下效果更好。本文将这些结果推广到正交有理函数的计算中,并基于修正矩与插值正交之间的联系,提出了一种新的修正矩算法。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信