Diabetic Retinopathy Diagnostic CAD System Using 3D-Oct Higher Order Spatial Appearance Model

M. Elsharkawy, A. Sharafeldeen, A. Soliman, F. Khalifa, M. Ghazal, Eman M. El-Daydamony, A. Atwan, H. Sandhu, A. El-Baz
{"title":"Diabetic Retinopathy Diagnostic CAD System Using 3D-Oct Higher Order Spatial Appearance Model","authors":"M. Elsharkawy, A. Sharafeldeen, A. Soliman, F. Khalifa, M. Ghazal, Eman M. El-Daydamony, A. Atwan, H. Sandhu, A. El-Baz","doi":"10.1109/ISBI52829.2022.9761508","DOIUrl":null,"url":null,"abstract":"Diagnoses of Diabetic Retinopathy (DR) at an early stage are of extreme importance so that the retina can be preserved and the risk of substantial damage to the retina or loss of vision is reduced. A new Computer-Aided Diagnosis (CAD) method based on Optical Coherence Tomography (OCT) scans of the retina is presented here for the detection of DR at an early stage. Utilizing an adaptive appearance-based approach that uses prior shape information, the system segments the retinal layers from the 3D-OCT scans. From the layers segmented from the B-scans volume of the OCT, novel texture features are extracted for DR diagnosis. In particular, a 2nd-order reflectivity value is calculated for each individual layer using the 2D Markov-Gibbs Random Field (2D-MGRF) model. Then, Cumulative Distribution Function (CDF) descriptors are used to represent the extracted image-derived feature using CDF’s percentiles. A feed-forward neural network is used for layer-by-layer classification of 3D volume using Gibbs energy features extracted from each individual layer. In the final stage, all twelve layers are fused with a global subject diagnosis based on a majority voting method. We evaluated a 3D-OCT system using 180 subjects using a combination of different k-fold validation techniques. The system performance for this CAD system using 4-, 5-, and 10-fold cross validation achieved accuracies of 89.4%, 91.5%, and 95.7%, respectively. In addition, our system’s ability to detect the DR early has been validated by further comparisons with the state-of-the-art deep learning networks.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"409 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Diagnoses of Diabetic Retinopathy (DR) at an early stage are of extreme importance so that the retina can be preserved and the risk of substantial damage to the retina or loss of vision is reduced. A new Computer-Aided Diagnosis (CAD) method based on Optical Coherence Tomography (OCT) scans of the retina is presented here for the detection of DR at an early stage. Utilizing an adaptive appearance-based approach that uses prior shape information, the system segments the retinal layers from the 3D-OCT scans. From the layers segmented from the B-scans volume of the OCT, novel texture features are extracted for DR diagnosis. In particular, a 2nd-order reflectivity value is calculated for each individual layer using the 2D Markov-Gibbs Random Field (2D-MGRF) model. Then, Cumulative Distribution Function (CDF) descriptors are used to represent the extracted image-derived feature using CDF’s percentiles. A feed-forward neural network is used for layer-by-layer classification of 3D volume using Gibbs energy features extracted from each individual layer. In the final stage, all twelve layers are fused with a global subject diagnosis based on a majority voting method. We evaluated a 3D-OCT system using 180 subjects using a combination of different k-fold validation techniques. The system performance for this CAD system using 4-, 5-, and 10-fold cross validation achieved accuracies of 89.4%, 91.5%, and 95.7%, respectively. In addition, our system’s ability to detect the DR early has been validated by further comparisons with the state-of-the-art deep learning networks.
基于3D-Oct高阶空间外观模型的糖尿病视网膜病变诊断CAD系统
糖尿病视网膜病变(DR)的早期诊断非常重要,这样可以保护视网膜,降低视网膜严重损伤或视力丧失的风险。本文提出了一种新的基于视网膜光学相干断层扫描(OCT)的计算机辅助诊断(CAD)方法,用于早期检测DR。利用一种基于自适应外观的方法,该方法使用先前的形状信息,系统从3D-OCT扫描中分割视网膜层。从OCT的b扫描体分割的层中,提取新的纹理特征用于DR诊断。特别是,使用二维马尔可夫-吉布斯随机场(2D- mgrf)模型计算每一层的二阶反射率值。然后,使用累积分布函数(CDF)描述符使用CDF的百分位数表示提取的图像衍生特征。利用从每一层提取的吉布斯能量特征,采用前馈神经网络对三维体进行逐层分类。在最后阶段,将所有12层融合到基于多数投票法的全局主题诊断中。我们使用不同的k-fold验证技术组合评估了180名受试者的3D-OCT系统。使用4倍、5倍和10倍交叉验证的CAD系统的系统性能分别达到了89.4%、91.5%和95.7%的准确率。此外,通过与最先进的深度学习网络的进一步比较,我们的系统早期检测DR的能力得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信