N. Zhang, Hongjian Wang, Jean-Charles Créput, Julien Moreau, Y. Ruichek
{"title":"Cellular GPU Model for Structured Mesh Generation and Its Application to the Stereo-Matching Disparity Map","authors":"N. Zhang, Hongjian Wang, Jean-Charles Créput, Julien Moreau, Y. Ruichek","doi":"10.1109/ISM.2013.18","DOIUrl":null,"url":null,"abstract":"This paper presents a cellular GPU model for structured mesh generation according to an input stereo-matching disparity map. Here, the disparity map stands for a density distribution that reflects the proximity of objects to the camera in 3D space. The meshing process consists in covering such data density distribution with a topological structured hexagonal grid that adapts itself and deforms according to the density values. The goal is to generate a compressed mesh where the nearest objects are provided with more details than objects which are far from the camera. The solution we propose is based on the Kohonen's Self-Organizing Map learning algorithm for the benefit of its ability to generate a topological map according to a probability distribution and its ability to be a natural massive parallel algorithm. We propose a GPU parallel model and its implantation of the SOM standard algorithm, and present experiments on a set of standard stereo-matching disparity map benchmarks.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"37 13 1","pages":"53-60"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a cellular GPU model for structured mesh generation according to an input stereo-matching disparity map. Here, the disparity map stands for a density distribution that reflects the proximity of objects to the camera in 3D space. The meshing process consists in covering such data density distribution with a topological structured hexagonal grid that adapts itself and deforms according to the density values. The goal is to generate a compressed mesh where the nearest objects are provided with more details than objects which are far from the camera. The solution we propose is based on the Kohonen's Self-Organizing Map learning algorithm for the benefit of its ability to generate a topological map according to a probability distribution and its ability to be a natural massive parallel algorithm. We propose a GPU parallel model and its implantation of the SOM standard algorithm, and present experiments on a set of standard stereo-matching disparity map benchmarks.