Endogenous Prediction of Bankruptcy using a Support Vector Machine

IF 0.3 Q4 MATHEMATICS, APPLIED
Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández
{"title":"Endogenous Prediction of Bankruptcy using a Support Vector Machine","authors":"Jorge Zazueta Gutierrez, Andrea Chávez-Heredia, J. Zazueta‐Hernández","doi":"10.31235/osf.io/ehpt7","DOIUrl":null,"url":null,"abstract":"We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.","PeriodicalId":42388,"journal":{"name":"International Journal of Combinatorial Optimization Problems and Informatics","volume":"28 1","pages":"88-97"},"PeriodicalIF":0.3000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Combinatorial Optimization Problems and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31235/osf.io/ehpt7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We build a global bankruptcy prediction model using a support vector machine trained only on firms' endogenous information in the form of financial ratios. The model is tested not only on entirely random unseen data but on samples taken from specific global regions and industries to test for prediction bias, achieving satisfactory prediction performance in all cases. While support vector machines are not easily interpretable, we explore variable importance and find it consistent with economic intuition.
基于支持向量机的破产内生预测
我们使用支持向量机建立了一个全球破产预测模型,该模型只训练了企业以财务比率形式的内生信息。该模型不仅在完全随机的看不见的数据上进行测试,而且在全球特定地区和行业的样本上进行测试,以测试预测偏差,在所有情况下都取得了令人满意的预测性能。虽然支持向量机不容易解释,但我们探索了变量重要性,并发现它与经济直觉一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信