Online multi-resource scheduling for minimum task completion time in cloud servers

MohammadJavad NoroozOliaee, B. Hamdaoui, M. Guizani, Mahdi Ben Ghorbel
{"title":"Online multi-resource scheduling for minimum task completion time in cloud servers","authors":"MohammadJavad NoroozOliaee, B. Hamdaoui, M. Guizani, Mahdi Ben Ghorbel","doi":"10.1109/INFCOMW.2014.6849261","DOIUrl":null,"url":null,"abstract":"We design a simple and efficient online scheme for scheduling cloud tasks requesting multiple resources, such as CPU and memory. The proposed scheme reduces the queuing delay of the cloud tasks by accounting for their execution time lengths. We also derive bounds on the average queuing delays, and evaluate the performance of our proposed scheme and compare it with those achievable under existing schemes by relying on real Google data traces. Using this data, we show that our scheme outperforms the other schemes in terms of resource utilizations as well as average task queuing delays.","PeriodicalId":6468,"journal":{"name":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"49 1","pages":"375-379"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2014.6849261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We design a simple and efficient online scheme for scheduling cloud tasks requesting multiple resources, such as CPU and memory. The proposed scheme reduces the queuing delay of the cloud tasks by accounting for their execution time lengths. We also derive bounds on the average queuing delays, and evaluate the performance of our proposed scheme and compare it with those achievable under existing schemes by relying on real Google data traces. Using this data, we show that our scheme outperforms the other schemes in terms of resource utilizations as well as average task queuing delays.
在线多资源调度以实现云服务器中任务完成时间的最小化
我们设计了一个简单而高效的在线方案,用于调度需要多个资源(如CPU和内存)的云任务。该方案通过计算云任务的执行时间长度来减少云任务的排队延迟。我们还推导了平均排队延迟的界限,并评估了我们提出的方案的性能,并将其与依靠真实的Google数据跟踪在现有方案下可实现的性能进行了比较。使用这些数据,我们表明我们的方案在资源利用率和平均任务队列延迟方面优于其他方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信