Ute Kelkenberg, A. Wagner, Jasmin Sarhaddar, M. Hecker, H. E. von der Leyen
{"title":"CCAAT/Enhancer-Binding Protein Decoy Oligodeoxynucleotide Inhibition of Macrophage-Rich Vascular Lesion Formation in Hypercholesterolemic Rabbits","authors":"Ute Kelkenberg, A. Wagner, Jasmin Sarhaddar, M. Hecker, H. E. von der Leyen","doi":"10.1161/01.ATV.0000017198.16727.27","DOIUrl":null,"url":null,"abstract":"Many cytokine genes, including those encoding acute-phase proteins and immunoglobulins, share binding sites for the CCAAT/enhancer-binding protein (C/EBP) in their 5′-flanking regions, and C/EBP-related transcription factors regulate cell proliferation during terminal differentiation. Therefore, C/EBP represents an attractive target for inhibiting restenosis after balloon angioplasty. In a rabbit model of restenosis that combines balloon injury of the carotid artery with cholesterol-mediated chronic inflammation, a decoy oligodeoxynucleotide (ODN) capable of neutralizing C/EBP was administered to the site of injury for 30 minutes. Electrophoretic mobility shift analysis confirmed that C/EBP activity in decoy ODN–treated segments was virtually absent after 2 days. Morphometric analysis after 28 days revealed significant reduction (up to 50%) of neointimal formation and intravascular inflammation in decoy ODN–treated segments compared with mutant control ODN or vehicle-treated segments. In addition, de novo synthesis of endothelin-1 and the number of proliferating cell nuclear antigen–positive smooth muscle cells in the vessel wall were markedly attenuated at day 3. These findings suggest that decoy ODN–based neutralization of C/EBP may be a feasible and effective method to limit restenosis after angioplasty brought about, at least in part, by inhibiting the de novo synthesis of endothelin-1.","PeriodicalId":8418,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","volume":"21 1","pages":"949-954"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.ATV.0000017198.16727.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Many cytokine genes, including those encoding acute-phase proteins and immunoglobulins, share binding sites for the CCAAT/enhancer-binding protein (C/EBP) in their 5′-flanking regions, and C/EBP-related transcription factors regulate cell proliferation during terminal differentiation. Therefore, C/EBP represents an attractive target for inhibiting restenosis after balloon angioplasty. In a rabbit model of restenosis that combines balloon injury of the carotid artery with cholesterol-mediated chronic inflammation, a decoy oligodeoxynucleotide (ODN) capable of neutralizing C/EBP was administered to the site of injury for 30 minutes. Electrophoretic mobility shift analysis confirmed that C/EBP activity in decoy ODN–treated segments was virtually absent after 2 days. Morphometric analysis after 28 days revealed significant reduction (up to 50%) of neointimal formation and intravascular inflammation in decoy ODN–treated segments compared with mutant control ODN or vehicle-treated segments. In addition, de novo synthesis of endothelin-1 and the number of proliferating cell nuclear antigen–positive smooth muscle cells in the vessel wall were markedly attenuated at day 3. These findings suggest that decoy ODN–based neutralization of C/EBP may be a feasible and effective method to limit restenosis after angioplasty brought about, at least in part, by inhibiting the de novo synthesis of endothelin-1.