{"title":"A jumper insertion algorithm under antenna ratio and timing constraints","authors":"X. Gao, L. Macchiarulo","doi":"10.1109/ICCAD.2011.6105344","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a jumper insertion algorithm under timing and antenna ratio constraints. Differently from the existing works which assume the jumpers to be placed above the highest layer of a routing tree, our work allows the jumpers to be placed on any routing layer. Furthermore, our algorithm is aware of the delay caused by the jumpers. Experimental results show that, by allowing the jumpers to be placed on any layer, the number of vias added by the jumpers can be reduced by 50%. The experiments also show that our timing-aware jumper insertion algorithm is better at satisfying the timing constraints.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"12 1","pages":"290-297"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we propose a jumper insertion algorithm under timing and antenna ratio constraints. Differently from the existing works which assume the jumpers to be placed above the highest layer of a routing tree, our work allows the jumpers to be placed on any routing layer. Furthermore, our algorithm is aware of the delay caused by the jumpers. Experimental results show that, by allowing the jumpers to be placed on any layer, the number of vias added by the jumpers can be reduced by 50%. The experiments also show that our timing-aware jumper insertion algorithm is better at satisfying the timing constraints.