Single- and narrow-line photoluminescence in a boron nitride-supported MoSe 2 /graphene heterostructure

L. E. P. L'opez, Loic Moczko, J. Wolff, Aditya Singh, Etienne Lorchat, M. Romeo, T. Taniguchi, Kenji Watanabe, S. Berciaud
{"title":"Single- and narrow-line photoluminescence in a boron nitride-supported MoSe 2 /graphene heterostructure","authors":"L. E. P. L'opez, Loic Moczko, J. Wolff, Aditya Singh, Etienne Lorchat, M. Romeo, T. Taniguchi, Kenji Watanabe, S. Berciaud","doi":"10.5802/CRPHYS.58","DOIUrl":null,"url":null,"abstract":"Heterostructures made from van der Waals materials provide a template to investigate proximity effects at atomically sharp heterointerfaces. In particular, near-field charge and energy transfer in heterostructures made from semiconducting transition metal dichalcogenides (TMD) have attracted interest to design model 2D \"donor-acceptor\" systems and new optoelectronic components. Here, using of Raman scattering and photoluminescence spectroscopies, we report a comprehensive characterization of a molybedenum diselenide (MoSe$_2$) monolayer deposited onto hexagonal boron nitride (hBN) and capped by mono- and bilayer graphene. Along with the atomically flat hBN susbstrate, a single graphene epilayer is sufficient to passivate the MoSe$_2$ layer and provides a homogenous environment without the need for an extra capping layer. As a result, we do not observe photo-induced doping in our heterostructure and the MoSe$_2$ excitonic linewidth gets as narrow as 1.6~meV, hence approaching the homogeneous limit. The semi-metallic graphene layer neutralizes the 2D semiconductor and enables picosecond non-radiative energy transfer that quenches radiative recombination from long-lived states. Hence, emission from the neutral band edge exciton largely dominates the photoluminescence spectrum of the MoSe$_2$/graphene heterostructure. Since this exciton has a picosecond radiative lifetime at low temperature, comparable with the energy transfer time, its low-temperature photoluminescence is only quenched by a factor of $3.3 \\pm 1$ and $4.4 \\pm 1$ in the presence of mono- and bilayer graphene, respectively. Finally, we exploit the valley-contrasting properties of monolayer TMDs and show that our simple stack provides a single-line 2D chiral emitter with degrees of valley polarization and coherence up to $30\\,\\%$ and $45\\,\\%$ at low temperature under excitation 60 meV above the bright exciton line.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/CRPHYS.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Heterostructures made from van der Waals materials provide a template to investigate proximity effects at atomically sharp heterointerfaces. In particular, near-field charge and energy transfer in heterostructures made from semiconducting transition metal dichalcogenides (TMD) have attracted interest to design model 2D "donor-acceptor" systems and new optoelectronic components. Here, using of Raman scattering and photoluminescence spectroscopies, we report a comprehensive characterization of a molybedenum diselenide (MoSe$_2$) monolayer deposited onto hexagonal boron nitride (hBN) and capped by mono- and bilayer graphene. Along with the atomically flat hBN susbstrate, a single graphene epilayer is sufficient to passivate the MoSe$_2$ layer and provides a homogenous environment without the need for an extra capping layer. As a result, we do not observe photo-induced doping in our heterostructure and the MoSe$_2$ excitonic linewidth gets as narrow as 1.6~meV, hence approaching the homogeneous limit. The semi-metallic graphene layer neutralizes the 2D semiconductor and enables picosecond non-radiative energy transfer that quenches radiative recombination from long-lived states. Hence, emission from the neutral band edge exciton largely dominates the photoluminescence spectrum of the MoSe$_2$/graphene heterostructure. Since this exciton has a picosecond radiative lifetime at low temperature, comparable with the energy transfer time, its low-temperature photoluminescence is only quenched by a factor of $3.3 \pm 1$ and $4.4 \pm 1$ in the presence of mono- and bilayer graphene, respectively. Finally, we exploit the valley-contrasting properties of monolayer TMDs and show that our simple stack provides a single-line 2D chiral emitter with degrees of valley polarization and coherence up to $30\,\%$ and $45\,\%$ at low temperature under excitation 60 meV above the bright exciton line.
氮化硼负载MoSe 2 /石墨烯异质结构中的单线和窄线光致发光
由范德华材料制成的异质结构为研究原子尖锐异质界面的接近效应提供了模板。特别是,由半导体过渡金属二硫族化物(TMD)制成的异质结构中的近场电荷和能量转移引起了人们对设计2D模型“供体-受体”系统和新型光电元件的兴趣。利用拉曼散射和光致发光光谱,我们报道了一种沉积在六方氮化硼(hBN)上并被单层和双层石墨烯覆盖的二硒化钼(MoSe$_2$)单层的全面表征。与原子平面的hBN衬底一起,单个石墨烯涂层足以钝化MoSe$_2$层,并提供均匀的环境,而无需额外的封盖层。结果表明,我们的异质结构中没有光致掺杂现象,并且MoSe$_2$激子线宽窄至1.6~meV,接近均匀极限。半金属石墨烯层中和了2D半导体,并实现了皮秒的非辐射能量传递,从而消除了长寿命态的辐射复合。因此,中性带边缘激子的发射在很大程度上主导了MoSe$_2$/石墨烯异质结构的光致发光光谱。由于该激子在低温下具有皮秒的辐射寿命,与能量传递时间相当,因此在单层和双层石墨烯存在下,其低温光致发光分别仅被淬灭$3.3 \pm 1$和$4.4 \pm 1$。最后,我们利用单层tmd的谷对比特性,并表明我们的简单堆栈提供了单线二维手性发射器,在低温下,在亮激子线以上60 meV的激励下,谷极化和相干度分别高达$30\,\%$和$45\,\%$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信