L. E. P. L'opez, Loic Moczko, J. Wolff, Aditya Singh, Etienne Lorchat, M. Romeo, T. Taniguchi, Kenji Watanabe, S. Berciaud
{"title":"Single- and narrow-line photoluminescence in a boron nitride-supported MoSe 2 /graphene heterostructure","authors":"L. E. P. L'opez, Loic Moczko, J. Wolff, Aditya Singh, Etienne Lorchat, M. Romeo, T. Taniguchi, Kenji Watanabe, S. Berciaud","doi":"10.5802/CRPHYS.58","DOIUrl":null,"url":null,"abstract":"Heterostructures made from van der Waals materials provide a template to investigate proximity effects at atomically sharp heterointerfaces. In particular, near-field charge and energy transfer in heterostructures made from semiconducting transition metal dichalcogenides (TMD) have attracted interest to design model 2D \"donor-acceptor\" systems and new optoelectronic components. Here, using of Raman scattering and photoluminescence spectroscopies, we report a comprehensive characterization of a molybedenum diselenide (MoSe$_2$) monolayer deposited onto hexagonal boron nitride (hBN) and capped by mono- and bilayer graphene. Along with the atomically flat hBN susbstrate, a single graphene epilayer is sufficient to passivate the MoSe$_2$ layer and provides a homogenous environment without the need for an extra capping layer. As a result, we do not observe photo-induced doping in our heterostructure and the MoSe$_2$ excitonic linewidth gets as narrow as 1.6~meV, hence approaching the homogeneous limit. The semi-metallic graphene layer neutralizes the 2D semiconductor and enables picosecond non-radiative energy transfer that quenches radiative recombination from long-lived states. Hence, emission from the neutral band edge exciton largely dominates the photoluminescence spectrum of the MoSe$_2$/graphene heterostructure. Since this exciton has a picosecond radiative lifetime at low temperature, comparable with the energy transfer time, its low-temperature photoluminescence is only quenched by a factor of $3.3 \\pm 1$ and $4.4 \\pm 1$ in the presence of mono- and bilayer graphene, respectively. Finally, we exploit the valley-contrasting properties of monolayer TMDs and show that our simple stack provides a single-line 2D chiral emitter with degrees of valley polarization and coherence up to $30\\,\\%$ and $45\\,\\%$ at low temperature under excitation 60 meV above the bright exciton line.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/CRPHYS.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Heterostructures made from van der Waals materials provide a template to investigate proximity effects at atomically sharp heterointerfaces. In particular, near-field charge and energy transfer in heterostructures made from semiconducting transition metal dichalcogenides (TMD) have attracted interest to design model 2D "donor-acceptor" systems and new optoelectronic components. Here, using of Raman scattering and photoluminescence spectroscopies, we report a comprehensive characterization of a molybedenum diselenide (MoSe$_2$) monolayer deposited onto hexagonal boron nitride (hBN) and capped by mono- and bilayer graphene. Along with the atomically flat hBN susbstrate, a single graphene epilayer is sufficient to passivate the MoSe$_2$ layer and provides a homogenous environment without the need for an extra capping layer. As a result, we do not observe photo-induced doping in our heterostructure and the MoSe$_2$ excitonic linewidth gets as narrow as 1.6~meV, hence approaching the homogeneous limit. The semi-metallic graphene layer neutralizes the 2D semiconductor and enables picosecond non-radiative energy transfer that quenches radiative recombination from long-lived states. Hence, emission from the neutral band edge exciton largely dominates the photoluminescence spectrum of the MoSe$_2$/graphene heterostructure. Since this exciton has a picosecond radiative lifetime at low temperature, comparable with the energy transfer time, its low-temperature photoluminescence is only quenched by a factor of $3.3 \pm 1$ and $4.4 \pm 1$ in the presence of mono- and bilayer graphene, respectively. Finally, we exploit the valley-contrasting properties of monolayer TMDs and show that our simple stack provides a single-line 2D chiral emitter with degrees of valley polarization and coherence up to $30\,\%$ and $45\,\%$ at low temperature under excitation 60 meV above the bright exciton line.