Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat

Shantanu Ghosh, K. Yu, Forough Arabshahi, K. Batmanghelich
{"title":"Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat","authors":"Shantanu Ghosh, K. Yu, Forough Arabshahi, K. Batmanghelich","doi":"10.48550/arXiv.2307.05350","DOIUrl":null,"url":null,"abstract":"ML model design either starts with an interpretable model or a Blackbox and explains it post hoc. Blackbox models are flexible but difficult to explain, while interpretable models are inherently explainable. Yet, interpretable models require extensive ML knowledge and tend to be less flexible and underperforming than their Blackbox variants. This paper aims to blur the distinction between a post hoc explanation of a Blackbox and constructing interpretable models. Beginning with a Blackbox, we iteratively carve out a mixture of interpretable experts (MoIE) and a residual network. Each interpretable model specializes in a subset of samples and explains them using First Order Logic (FOL), providing basic reasoning on concepts from the Blackbox. We route the remaining samples through a flexible residual. We repeat the method on the residual network until all the interpretable models explain the desired proportion of data. Our extensive experiments show that our route, interpret, and repeat approach (1) identifies a diverse set of instance-specific concepts with high concept completeness via MoIE without compromising in performance, (2) identifies the relatively \"harder\" samples to explain via residuals, (3) outperforms the interpretable by-design models by significant margins during test-time interventions, and (4) fixes the shortcut learned by the original Blackbox. The code for MoIE is publicly available at: https://github.com/batmanlab/ICML-2023-Route-interpret-repeat.","PeriodicalId":74529,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","volume":"61 1","pages":"11360-11397"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.05350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

ML model design either starts with an interpretable model or a Blackbox and explains it post hoc. Blackbox models are flexible but difficult to explain, while interpretable models are inherently explainable. Yet, interpretable models require extensive ML knowledge and tend to be less flexible and underperforming than their Blackbox variants. This paper aims to blur the distinction between a post hoc explanation of a Blackbox and constructing interpretable models. Beginning with a Blackbox, we iteratively carve out a mixture of interpretable experts (MoIE) and a residual network. Each interpretable model specializes in a subset of samples and explains them using First Order Logic (FOL), providing basic reasoning on concepts from the Blackbox. We route the remaining samples through a flexible residual. We repeat the method on the residual network until all the interpretable models explain the desired proportion of data. Our extensive experiments show that our route, interpret, and repeat approach (1) identifies a diverse set of instance-specific concepts with high concept completeness via MoIE without compromising in performance, (2) identifies the relatively "harder" samples to explain via residuals, (3) outperforms the interpretable by-design models by significant margins during test-time interventions, and (4) fixes the shortcut learned by the original Blackbox. The code for MoIE is publicly available at: https://github.com/batmanlab/ICML-2023-Route-interpret-repeat.
划分和征服黑箱到可解释模型的混合:路线,解释,重复
机器学习模型设计要么从一个可解释的模型开始,要么从一个黑盒开始,并在事后解释它。黑盒模型是灵活的,但难以解释,而可解释模型本质上是可解释的。然而,可解释的模型需要广泛的ML知识,并且往往比它们的Blackbox变体更不灵活,表现不佳。本文旨在模糊黑箱的事后解释和构建可解释模型之间的区别。从黑盒开始,我们迭代地划分出可解释专家(MoIE)和残余网络的混合物。每个可解释的模型专门研究样本的子集,并使用一阶逻辑(FOL)解释它们,提供对Blackbox概念的基本推理。我们将剩余的样品通过柔性残差输送。我们在残差网络上重复该方法,直到所有可解释模型都能解释所需的数据比例。我们的大量实验表明,我们的路径、解释和重复方法(1)在不影响性能的情况下,通过MoIE识别出具有高概念完整性的不同实例特定概念集,(2)通过残差识别出相对“较难”解释的样本,(3)在测试时间干预期间显著优于设计可解释模型,(4)修复了原始Blackbox学习到的捷径。MoIE的代码可在https://github.com/batmanlab/ICML-2023-Route-interpret-repeat公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信