Model Mis-Specification in Newsvendor Decisions: A Comparison of Frequentist Parametric, Bayesian Parametric and Nonparametric Approaches

IF 0.1 4区 工程技术 Q4 ENGINEERING, MANUFACTURING
Gah-Yi Ban, Zhenyu Gao, Fabian Taigel
{"title":"Model Mis-Specification in Newsvendor Decisions: A Comparison of Frequentist Parametric, Bayesian Parametric and Nonparametric Approaches","authors":"Gah-Yi Ban, Zhenyu Gao, Fabian Taigel","doi":"10.2139/ssrn.3495733","DOIUrl":null,"url":null,"abstract":"We compare three different approaches studied by past literature on data-driven inventory optimization--- Frequentist Parametric (FP), Bayesian Parametric (BP) and Nonparametric--- for the newsvendor problem. For the Parametric approaches, we allow for mis-specification of the demand model. We prove, under mild regularity conditions, (i) asymptotic bias and variance formulas of FP and BP are equivalent, (ii) mis-specified Parametric approaches yield asymptotically biased decisions, unlike the correctly-specified Parametric approaches and the Nonparametric approach, and (iii) asymptotic variance of the mis-specified Parametric approaches converges to zero at rate $1/n$, in contrast to the $1/n^2$ rate for the correctly-specified Parametric approaches and the Nonparametric approach, where $n$ is the number of demand samples. We then show, for nine pairs of assumed versus true demand distribution pairs, (iv) asymptotic bias and variance formulas approximate finite-sample counterparts very well, (v) correctly-specified Parametric approaches dominate the Nonparametric approach in the asymptotic mean-squared error (AMSE) of the decision and the cost, and (vi) surprisingly, it is possible for mis-specified Parametric approaches to dominate the Nonparametric approach in the AMSE of the decision and the cost. We compare the approaches on a dataset from a large fresh food chain, and discuss the nuances of choosing the ``best'' approach.","PeriodicalId":49886,"journal":{"name":"Manufacturing Engineering","volume":"14 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manufacturing Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2139/ssrn.3495733","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

Abstract

We compare three different approaches studied by past literature on data-driven inventory optimization--- Frequentist Parametric (FP), Bayesian Parametric (BP) and Nonparametric--- for the newsvendor problem. For the Parametric approaches, we allow for mis-specification of the demand model. We prove, under mild regularity conditions, (i) asymptotic bias and variance formulas of FP and BP are equivalent, (ii) mis-specified Parametric approaches yield asymptotically biased decisions, unlike the correctly-specified Parametric approaches and the Nonparametric approach, and (iii) asymptotic variance of the mis-specified Parametric approaches converges to zero at rate $1/n$, in contrast to the $1/n^2$ rate for the correctly-specified Parametric approaches and the Nonparametric approach, where $n$ is the number of demand samples. We then show, for nine pairs of assumed versus true demand distribution pairs, (iv) asymptotic bias and variance formulas approximate finite-sample counterparts very well, (v) correctly-specified Parametric approaches dominate the Nonparametric approach in the asymptotic mean-squared error (AMSE) of the decision and the cost, and (vi) surprisingly, it is possible for mis-specified Parametric approaches to dominate the Nonparametric approach in the AMSE of the decision and the cost. We compare the approaches on a dataset from a large fresh food chain, and discuss the nuances of choosing the ``best'' approach.
报贩决策中的模型错误规范:频率参数、贝叶斯参数和非参数方法的比较
我们比较了过去文献中关于数据驱动库存优化的三种不同方法——频率参数法(FP)、贝叶斯参数法(BP)和非参数法——用于解决报贩问题。对于参数化方法,我们允许需求模型的错误说明。我们证明,在温和正则性条件下,(i) FP和BP的渐近偏差和方差公式是等价的,(ii)与正确指定的参数方法和非参数方法不同,错误指定的参数方法产生渐近偏差决策,以及(iii)与正确指定的参数方法和非参数方法相比,错误指定的参数方法的渐近方差以$1/n$的速率收敛于零,而不是$1/n^2$的速率。其中$n$为需求样本的个数。然后,我们显示,对于9对假设与真实的需求分布对,(iv)渐近偏差和方差公式非常好地近似有限样本对应,(v)正确指定的参数方法在决策和成本的渐近均方误差(AMSE)中主导非参数方法,以及(vi)令人惊讶的是,错误指定的参数方法可能在决策和成本的AMSE中主导非参数方法。我们比较了来自大型新鲜食物链的数据集上的方法,并讨论了选择“最佳”方法的细微差别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manufacturing Engineering
Manufacturing Engineering 工程技术-工程:制造
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信