Design of Energy Modulation Massive SIMO Transceivers via Machine Learning

Muhang Lan, Jianhao Huang, Han Zhang, Chuan Huang
{"title":"Design of Energy Modulation Massive SIMO Transceivers via Machine Learning","authors":"Muhang Lan, Jianhao Huang, Han Zhang, Chuan Huang","doi":"10.1109/GLOBECOM42002.2020.9348239","DOIUrl":null,"url":null,"abstract":"This paper considers a massive single-input multiple-output (SIMO) system, where multiple single-antenna transmitters simultaneously communicate with a receiver equipped with a large number of antennas. Different from the conventional noncoherent transceivers which require a certain level of the statistical information on the channel fading, we propose a joint transceiver design method based on machine learning, requiring a limited number of channel realizations. In the proposed method, the multiple transmitters, the channel, and the receiver are represented with a deep neural network (NN), and an autoencoder is adopted to minimize the end-to-end transmission error probability. Simulation results show that the proposed NN-based transceiver achieves lower transmission error probability in typical scenarios, and is more robust against the channel parameters variation compared with the existing methods.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"77 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9348239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers a massive single-input multiple-output (SIMO) system, where multiple single-antenna transmitters simultaneously communicate with a receiver equipped with a large number of antennas. Different from the conventional noncoherent transceivers which require a certain level of the statistical information on the channel fading, we propose a joint transceiver design method based on machine learning, requiring a limited number of channel realizations. In the proposed method, the multiple transmitters, the channel, and the receiver are represented with a deep neural network (NN), and an autoencoder is adopted to minimize the end-to-end transmission error probability. Simulation results show that the proposed NN-based transceiver achieves lower transmission error probability in typical scenarios, and is more robust against the channel parameters variation compared with the existing methods.
基于机器学习的能量调制海量SIMO收发器设计
本文研究了一个大型单输入多输出(SIMO)系统,其中多个单天线发射器同时与配备大量天线的接收器进行通信。与传统的非相干收发器需要一定程度的信道衰落统计信息不同,我们提出了一种基于机器学习的联合收发器设计方法,需要有限数量的信道实现。该方法采用深度神经网络(NN)来表示多个发送器、信道和接收器,并采用自编码器来最小化端到端传输的错误概率。仿真结果表明,与现有方法相比,所提出的基于神经网络的收发器在典型场景下实现了更低的传输错误概率,并且对信道参数变化具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信