A Social Formalism and Survey for Recommender Systems

D. F. Bernardes, M. Diaby, Raphaël Fournier-S’niehotta, F. Fogelman-Soulié, E. Viennet
{"title":"A Social Formalism and Survey for Recommender Systems","authors":"D. F. Bernardes, M. Diaby, Raphaël Fournier-S’niehotta, F. Fogelman-Soulié, E. Viennet","doi":"10.1145/2783702.2783705","DOIUrl":null,"url":null,"abstract":"This paper presents a general formalism for Recommender Systems based on Social Network Analysis. After introducing the classical categories of recommender systems, we present our Social Filtering formalism and show that it extends association rules, classical Collaborative Filtering and Social Recommendation, while providing additional possibilities. This allows us to survey the literature and illustrate the versatility of our approach on various publicly available datasets, comparing our results with the literature.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"4 1","pages":"20-37"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783702.2783705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

This paper presents a general formalism for Recommender Systems based on Social Network Analysis. After introducing the classical categories of recommender systems, we present our Social Filtering formalism and show that it extends association rules, classical Collaborative Filtering and Social Recommendation, while providing additional possibilities. This allows us to survey the literature and illustrate the versatility of our approach on various publicly available datasets, comparing our results with the literature.
社会形式主义与推荐制度研究
本文提出了一种基于社会网络分析的推荐系统的通用形式。在介绍了推荐系统的经典类别之后,我们提出了我们的社会过滤形式,并表明它扩展了关联规则、经典协同过滤和社会推荐,同时提供了额外的可能性。这使我们能够调查文献并说明我们的方法在各种公开可用数据集上的多功能性,并将我们的结果与文献进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信