A nonexistence result for rotating mean curvature flows in ℝ4

IF 1.2 1区 数学 Q1 MATHEMATICS
Wenkui Du, Robert Haslhofer
{"title":"A nonexistence result for rotating mean curvature flows in ℝ4","authors":"Wenkui Du, Robert Haslhofer","doi":"10.1515/crelle-2023-0039","DOIUrl":null,"url":null,"abstract":"Abstract Some worrisome potential singularity models for the mean curvature flow are rotating ancient flows, i.e. ancient flows whose tangent flow at - ∞ {-\\infty} is a cylinder ℝ k × S n - k {\\mathbb{R}^{k}\\times S^{n-k}} and that are rotating within the ℝ k {\\mathbb{R}^{k}} -factor. We note that while the ℝ k {\\mathbb{R}^{k}} -factor, i.e. the axis of the cylinder, is unique by the fundamental work of Colding-Minicozzi, the uniqueness of tangent flows by itself does not provide any information about rotations within the ℝ k {\\mathbb{R}^{k}} -factor. In the present paper, we rule out rotating ancient flows among all ancient noncollapsed flows in ℝ 4 {\\mathbb{R}^{4}} .","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"9 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0039","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Some worrisome potential singularity models for the mean curvature flow are rotating ancient flows, i.e. ancient flows whose tangent flow at - ∞ {-\infty} is a cylinder ℝ k × S n - k {\mathbb{R}^{k}\times S^{n-k}} and that are rotating within the ℝ k {\mathbb{R}^{k}} -factor. We note that while the ℝ k {\mathbb{R}^{k}} -factor, i.e. the axis of the cylinder, is unique by the fundamental work of Colding-Minicozzi, the uniqueness of tangent flows by itself does not provide any information about rotations within the ℝ k {\mathbb{R}^{k}} -factor. In the present paper, we rule out rotating ancient flows among all ancient noncollapsed flows in ℝ 4 {\mathbb{R}^{4}} .
一个关于旋转平均曲率流的不存在性结果
一些令人担忧的平均曲率流的潜在奇异模型是旋转古流,即切线流为-∞的古流 {-\infty} 一个圆柱体是n - k吗 {\mathbb{R}^{k}\times s ^{n-k}} 它们在k中旋转 {\mathbb{R}^{k}} 因子。我们注意到,当 {\mathbb{R}^{k}} -因子,即圆柱体的轴,在Colding-Minicozzi的基础工作中是唯一的,切线流本身的唯一性并不能提供关于在h内旋转的任何信息 {\mathbb{R}^{k}} 因子。在这篇论文中,我们排除了在所有的古代非坍缩流中旋转的古代流 {\mathbb{R}^{4}} .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信