Voice based classification of patients with Amyotrophic Lateral Sclerosis, Parkinson’s Disease and Healthy Controls with CNN-LSTM using transfer learning

Jhansi Mallela, Aravind Illa, BN Suhas, Sathvik Udupa, Yamini Belur, A. Nalini, R. Yadav, P. Reddy, D. Gope, P. Ghosh
{"title":"Voice based classification of patients with Amyotrophic Lateral Sclerosis, Parkinson’s Disease and Healthy Controls with CNN-LSTM using transfer learning","authors":"Jhansi Mallela, Aravind Illa, BN Suhas, Sathvik Udupa, Yamini Belur, A. Nalini, R. Yadav, P. Reddy, D. Gope, P. Ghosh","doi":"10.1109/ICASSP40776.2020.9053682","DOIUrl":null,"url":null,"abstract":"In this paper, we consider 2-class and 3-class classification problems for classifying patients with Amyotrophic Lateral Sclerosis (ALS), Parkinson’s Disease (PD), and Healthy Controls (HC) using a CNNLSTM network. Classification performance is examined for three different tasks, namely, Spontaneous speech (SPON), Diadochokinetic rate (DIDK) and Sustained phoneme production (PHON). Experiments are conducted using speech data recorded from 60 ALS, 60 PD, and 60 HC subjects. Classifications using SVM and DNN are considered as baseline schemes. Classification accuracy of ALS and HC (indicated by ALS/HC) using CNN-LSTM has shown an improvement of 10.40%, 4.22% and 0.08% for PHON, SPON and DIDK tasks, respectively over the best of the baseline schemes. Furthermore, the CNN-LSTM network achieves the highest PD/HC classification accuracy of 88.5% for the SPON task and the highest 3-class (ALS/PD/HC) classification accuracy of 85.24% for the DIDK task. Experiments using transfer learning at low resource training data show that data from ALS benefits PD/HC classification and vice-versa. Experiments with fine-tuning weights of 3-class (ALS/PD/HC) classifier for 2-class classification (PD/HC or ALS/HC) gives an absolute improvement of 2% classification accuracy in SPON task when compared with randomly initialized 2-class classifier.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"51 1","pages":"6784-6788"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, we consider 2-class and 3-class classification problems for classifying patients with Amyotrophic Lateral Sclerosis (ALS), Parkinson’s Disease (PD), and Healthy Controls (HC) using a CNNLSTM network. Classification performance is examined for three different tasks, namely, Spontaneous speech (SPON), Diadochokinetic rate (DIDK) and Sustained phoneme production (PHON). Experiments are conducted using speech data recorded from 60 ALS, 60 PD, and 60 HC subjects. Classifications using SVM and DNN are considered as baseline schemes. Classification accuracy of ALS and HC (indicated by ALS/HC) using CNN-LSTM has shown an improvement of 10.40%, 4.22% and 0.08% for PHON, SPON and DIDK tasks, respectively over the best of the baseline schemes. Furthermore, the CNN-LSTM network achieves the highest PD/HC classification accuracy of 88.5% for the SPON task and the highest 3-class (ALS/PD/HC) classification accuracy of 85.24% for the DIDK task. Experiments using transfer learning at low resource training data show that data from ALS benefits PD/HC classification and vice-versa. Experiments with fine-tuning weights of 3-class (ALS/PD/HC) classifier for 2-class classification (PD/HC or ALS/HC) gives an absolute improvement of 2% classification accuracy in SPON task when compared with randomly initialized 2-class classifier.
基于语音的肌萎缩侧索硬化症、帕金森病和健康对照的CNN-LSTM转移学习分类
在本文中,我们考虑了使用CNNLSTM网络对肌萎缩侧索硬化症(ALS)、帕金森病(PD)和健康对照(HC)患者进行分类的2类和3类分类问题。本研究考察了三种不同任务的分类性能,即自发性语音(SPON)、双代动力学速率(DIDK)和持续音素产生(PHON)。实验使用60例ALS、60例PD和60例HC受试者的语音数据进行。采用支持向量机和深度神经网络作为分类基准方案。使用CNN-LSTM对PHON、SPON和DIDK任务的ALS和HC(用ALS/HC表示)分类准确率分别比最佳基线方案提高10.40%、4.22%和0.08%。此外,CNN-LSTM网络在SPON任务上的PD/HC分类准确率最高为88.5%,在DIDK任务上的3类(ALS/PD/HC)分类准确率最高为85.24%。在低资源训练数据上使用迁移学习的实验表明,ALS数据有利于PD/HC分类,反之亦然。通过对3类(ALS/PD/HC)分类器权值进行微调,对2类分类器(PD/HC或ALS/HC)进行实验,SPON任务的分类准确率比随机初始化的2类分类器提高了2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信