Data Analysis for the Aero Derivative Engines Bleed System Failure Identification and Prediction

Q3 Computer Science
Khalid Salmanov, Hadi Harb
{"title":"Data Analysis for the Aero Derivative Engines Bleed System Failure Identification and Prediction","authors":"Khalid Salmanov, Hadi Harb","doi":"10.5815/ijisa.2021.06.02","DOIUrl":null,"url":null,"abstract":"Middle size gas/diesel aero-derivative power generation engines are widely used on various industrial plants in the oil and gas industry. Bleed of Valve (BOV) system failure is one of the failure mechanisms of these engines. The BOV is part of the critical anti-surge system and this kind of failure is almost impossible to identify while the engine is in operation. If the engine operates with BOV system impaired, this leads to the high maintenance cost during overhaul, increased emission rate, fuel consumption and loss in the efficiency. This paper proposes the use of readily available sensor data in a Supervisory Control and Data Acquisition (SCADA) system in combination with a machine learning algorithm for early identification of BOV system failure. Different machine learning algorithms and dimensionality reduction techniques are evaluated on real world engine data. The experimental results show that Bleed of Valve systems failures could be effectively predicted from readily available sensor data.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2021.06.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

Abstract

Middle size gas/diesel aero-derivative power generation engines are widely used on various industrial plants in the oil and gas industry. Bleed of Valve (BOV) system failure is one of the failure mechanisms of these engines. The BOV is part of the critical anti-surge system and this kind of failure is almost impossible to identify while the engine is in operation. If the engine operates with BOV system impaired, this leads to the high maintenance cost during overhaul, increased emission rate, fuel consumption and loss in the efficiency. This paper proposes the use of readily available sensor data in a Supervisory Control and Data Acquisition (SCADA) system in combination with a machine learning algorithm for early identification of BOV system failure. Different machine learning algorithms and dimensionality reduction techniques are evaluated on real world engine data. The experimental results show that Bleed of Valve systems failures could be effectively predicted from readily available sensor data.
航空衍生发动机排气系统故障识别与预测的数据分析
中型气/柴油航空衍生发电发动机广泛应用于石油和天然气行业的各种工业装置。气门放气系统失效是这类发动机的失效机制之一。BOV是关键防喘振系统的一部分,这种故障在发动机运行时几乎无法识别。如果发动机在BOV系统受损的情况下运行,这将导致大修期间的高维护成本,增加排放率,燃油消耗和效率损失。本文提出在监控和数据采集(SCADA)系统中使用现成的传感器数据,并结合机器学习算法来早期识别BOV系统故障。不同的机器学习算法和降维技术在真实世界的引擎数据上进行了评估。实验结果表明,利用现有的传感器数据可以有效地预测阀门系统的泄漏故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信